A077442 2*a(n)^2 + 7 is a square.
1, 3, 9, 19, 53, 111, 309, 647, 1801, 3771, 10497, 21979, 61181, 128103, 356589, 746639, 2078353, 4351731, 12113529, 25363747, 70602821, 147830751, 411503397, 861620759, 2398417561, 5021893803, 13979001969, 29269742059, 81475594253
Offset: 0
Examples
a(4)^2 - 2*a(3)^2 = 27^2 - 2*19^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
References
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. J. O'Connor and E. F. Robertson, History of Pell's Equation
- J. P. Robertson, Solving the Generalized Pell Equation
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Mathematica
CoefficientList[Series[(1+3 x+3 x^2+x^3)/ (1-6 x^2+x^4),{x,0,50}],x] (* Harvey P. Dale, Mar 12 2011 *) LinearRecurrence[{0, 6, 0, -1},{1,3,9,19},50] (* Sture Sjöstedt, Oct 08 2012 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;3;9;19])[1,1] \\ Charles R Greathouse IV, Jun 20 2015
-
PARI
Vec((x+1)^3/(x^2+2*x-1)/(x^2-2*x-1) + O(x^50)) \\ Colin Barker, Mar 27 2016
Formula
For n>0, a(2n) = A046090(n) + A001653(n) + A001652(n-1); a(2n+1) = A001652(n+1) - A001652(n-1) - A001653(n-1); e.g. 53=21+29+3; 111=119-3-5. - Charlie Marion, Aug 14 2003
The same recurrences hold for the odd and even indices respectively : a(n+2) = 6*a(n+1) - a(n), a(n+1) = 3*a(n) + 2*(2*a(n)^2+7)^0.5. - Richard Choulet, Oct 11 2007
G.f.: (x+1)^3/(x^2+2*x-1)/(x^2-2*x-1). a(n)= [ -A077985(n)-3*A077985(n-1)+3*A000129(n+1)+A000129(n)]/2. - R. J. Mathar, Nov 16 2007
a(n) = 6*a(n-2) - a(n-4) with a(1)=1, a(2)=3, a(3)=9, a(4)=19. - Sture Sjöstedt, Oct 08 2012
a(n) = ((-(-1 - sqrt(2))^n*(-2+sqrt(2)) - (-1+sqrt(2))^n*(2+sqrt(2)) + (1-sqrt(2))^n*(-4+3*sqrt(2)) + (1+sqrt(2))^n*(4+3*sqrt(2))))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
Extensions
Edited: n in Name replaced by a(n). Pell comments moved to comment section. - Wolfdieter Lang, Feb 05 2015
Comments