cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077497 Primes of the form 2^r*5^s + 1.

Original entry on oeis.org

2, 3, 5, 11, 17, 41, 101, 251, 257, 401, 641, 1601, 4001, 16001, 25601, 40961, 62501, 65537, 160001, 163841, 16384001, 26214401, 40960001, 62500001, 104857601, 167772161, 256000001, 409600001, 655360001, 2441406251, 2500000001, 4194304001, 10485760001
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Comments

These are also the prime numbers p for which there is an integer solution x to the equation p*x = p*10^p + x, or equivalently, the prime numbers p for which (p*10^p)/(p-1) is an integer. - Vicente Izquierdo Gomez, Feb 20 2013
For n > 2, all terms are congruent to 5 (mod 6). - Muniru A Asiru, Sep 03 2017

Examples

			101 is in the sequence, since 101 = 2^2*5^2 + 1 and 101 is prime.
		

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered(Filtered([1..K],i-> i mod 6=5),IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,5]  then Add(C,Position(B,i)); fi; od;
    A077497:=Concatenation([2,3],List(C,i->A[i])); # Muniru A Asiru, Sep 03 2017
  • Mathematica
    Do[p=Prime[k];s=FindInstance[p x == p 10^p+x,x,Integers];If[s!={},Print[p]],{k,10000}] (* Vicente Izquierdo Gomez, Feb 20 2013 *)
  • PARI
    list(lim)=my(v=List(),t);for(r=0,log(lim)\log(5),t=5^r;while(t<=lim,if(isprime(t+1),listput(v,t+1)); t<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 29 2013
    

Extensions

Corrected and extended by Reinhard Zumkeller, Nov 19 2002
More terms from Ray Chandler, Aug 02 2003