cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077498 Primes of the form 2^r*7^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 29, 113, 197, 257, 449, 1373, 3137, 50177, 65537, 114689, 268913, 470597, 614657, 1075649, 3294173, 7340033, 9834497, 210827009, 275365889, 359661569, 469762049, 1129900997, 1438646273, 1927561217, 7909306973, 52613349377
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Examples

			197 = 2^2*7^2 + 1 is a member.
		

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Aug 02 2003

A077500 Primes of the form 2^r*p^s + 1, where p is an odd prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 47, 53, 59, 73, 83, 89, 97, 101, 107, 109, 113, 137, 149, 163, 167, 173, 179, 193, 197, 227, 233, 251, 257, 263, 269, 293, 317, 347, 353, 359, 383, 389, 401, 433, 449, 467, 479, 487, 503, 509, 557, 563, 569, 577, 587
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Comments

Primes p such that p-1 has at most one odd prime divisor.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[110]],Length[Select[FactorInteger[#-1] [[All, 1]], OddQ]]<2&] (* Harvey P. Dale, Oct 09 2017 *)

Extensions

Corrected and extended by Sascha Kurz, Jan 04 2003

A291049 Primes of the form 2^r * 17^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 137, 257, 65537, 157217, 295937, 557057, 1336337, 96550277, 1212153857, 2281701377, 5473632257, 395469930497, 1401249857537, 2637646790657, 4964982194177, 28572702478337, 1271035441709057, 38280596832649217, 1872540629620228097, 6634884445436379137
Offset: 1

Views

Author

Muniru A Asiru, Sep 15 2017

Keywords

Comments

Primes of the forms a^r * b^s + 1 where (a, b) = (2,1), (2,3), (2,5), (2,7), (2,11) and (2,13) are A092506, A005109, A077497, A077498, A077499 and A173236.
Fermat prime exponents r are 0, 1, 2, 4, 8, 16.
For n > 2, all terms are congruent to 5 (mod 6).
Also, these are prime numbers p for which (p*34^p)/(p-1) is an integer.

Examples

			With n = 1, a(1) = 2^0 * 17^0 + 1 = 2.
With n = 5, a(5) = 2^3 * 17^1 + 1 = 137.
list of (r,s): (0,0), (1,0), (2,0), (4,0), (3,1), (8,0), (16,0), (5,3), (10,2), (15,1), (4,4), (2,6).
		

Crossrefs

Cf. Sequences of primes of form 2^n * q^u + 1: A092506 (q=1), A005109 (q=3), A077497 (q=5), A077498 (q=7), A077499 (q=11), A173236 (q=13).

Programs

  • GAP
    K:=26*10^7+1;; # to get all terms <= K.
    A:=Filtered(Filtered([1,3..K],i-> i mod 6=5),IsPrime);;    I:=[17];;
    B:=List(A,i->Elements(Factors(i-1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A291049:=Concatenation([2,3],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
    
  • Maple
    N:= 10^20: # to get all terms <= N+1
    S:= NULL:
    for r from 0 to ilog2(N) do
      for s from 0 to floor(log[17](N/2^r)) do
        p:= 2^r*17^s +1;
        if isprime(p) then
         S:= S, p
        fi
    od od:
    sort([S]); # Robert Israel, Sep 26 2017
  • Mathematica
    With[{nn = 10^19, q = 17}, Select[Sort@ Flatten@ Table[2^i*q^j + 1, {i, 0, Log[2, nn]}, {j, 0, Log[q, nn/2^i]}], PrimeQ]] (* Michael De Vlieger, Sep 18 2017, after Robert G. Wilson v at A005109 *)
  • PARI
    lista(nn) = my(t, v=List([])); for(r=0, logint(nn, 2), t=2^r; for(s=0, logint(nn\t, 17), if(isprime(t+1), listput(v, t+1)); t*=17)); Vec(vecsort(v)) \\ Jinyuan Wang, Jun 26 2022

A086983 Primes of the form 2^r*p^s - 1, where p is an odd prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 79, 97, 103, 107, 127, 151, 157, 163, 191, 193, 199, 211, 223, 241, 271, 277, 283, 313, 331, 337, 367, 383, 397, 421, 431, 457, 463, 487, 499, 523, 541, 547, 577, 607, 613, 631, 647, 661, 673
Offset: 1

Views

Author

Ray Chandler, Aug 02 2003

Keywords

Comments

Primes p such that p+1 has at most one odd prime divisor.

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [$3..(N+1)/2]):
    sort(convert(select(isprime, {2,seq(seq(seq(2^r*p^s-1, r = 1 .. ilog2((N+1)/p^s)),s=0..floor(log[p]((N+1)/2))),p=Primes)}),list)); # Robert Israel, Jun 13 2018
Showing 1-4 of 4 results.