A077590 Decimal expansion of imaginary part of the infinite power tower of i.
3, 6, 0, 5, 9, 2, 4, 7, 1, 8, 7, 1, 3, 8, 5, 4, 8, 5, 9, 5, 2, 9, 4, 0, 5, 2, 6, 9, 0, 6, 0, 0, 0, 6, 5, 3, 8, 2, 6, 5, 7, 7, 0, 3, 0, 7, 8, 6, 0, 2, 7, 0, 0, 4, 7, 4, 1, 4, 5, 1, 2, 9, 8, 3, 8, 0, 4, 6, 0, 1, 9, 5, 2, 1, 1, 5, 0, 7, 7, 3, 0, 5, 3, 2, 9, 2, 2, 7, 5, 4, 1, 4, 0, 0, 2, 5, 6, 8, 6, 4, 7
Offset: 0
Examples
0.36059247187138548595294052690600065382657703078602700474145129838046019521150773...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
Links
- Eric Weisstein's World of Mathematics, i.
- Eric Weisstein's World of Mathematics, Power Tower.
Programs
-
Maple
evalf(Im(2*I*LambertW(-I*Pi/2)/Pi), 139); # Alois P. Heinz, Dec 12 2023
-
Mathematica
Prepend@@RealDigits[Im[ -ProductLog[ -Log[I]]/Log[I]], 10, 150]
-
PARI
z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(imag(z)\e) \\ M. F. Hasler, May 17 2018