A077653 a(1)=1, a(2)=2, a(3)=2, a(n) = abs(a(n-1) - a(n-2) - a(n-3)).
1, 2, 2, 1, 3, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a077653 n = a077653_list !! (n-1) a077653_list = 1 : 2 : 2 : zipWith3 (\u v w -> abs (w - v - u)) a077653_list (tail a077653_list) (drop 2 a077653_list) -- Reinhard Zumkeller, Oct 11 2014
-
Magma
m:=120; A077653:=[n le 3 select Floor((n+2)/2) else Abs(Self(n-1) - Self(n-2) - Self(n-3)): n in [1..m+5]]; [A077653[n]: n in [1..m]]; // G. C. Greubel, Sep 11 2024
-
Mathematica
nxt[{a_,b_,c_}]:={b,c,Abs[c-b-a]}; NestList[nxt,{1,2,2},110][[All,1]] (* Harvey P. Dale, Sep 01 2020 *)
-
SageMath
@CachedFunction def a(n): # a = A077653 if n<4: return int((n+2)//2) else: return abs(a(n-1)-a(n-2)-a(n-3)) [a(n) for n in range(1,101)] # G. C. Greubel, Sep 11 2024
Formula
a(n)/sqrt(n) is bounded. More precisely, let M(n) = Max ( a(k) : 1<=k<=n ); then M(n)= floor(sqrt(n+9)) for n>4
Comments