cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077653 a(1)=1, a(2)=2, a(3)=2, a(n) = abs(a(n-1) - a(n-2) - a(n-3)).

Original entry on oeis.org

1, 2, 2, 1, 3, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7
Offset: 1

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Comments

Conjecture : let z(1)=x; z(2)=y; z(3)= z; z(n)=abs(z(n-1)-z(n-2)-z(n-3)) if z(n) is unbounded (i.e. x,y,z are such that z(n) doesn't reach a cycle of length 2), then there are 2 integers n(x,y,z) and w(x,y,z) such that M(n) = floor(sqrt(n+w(x,y,z))) for n>n(,x,y,z) where M(n) = Max ( a(k) : 1<=k<=n ). As example : w(1,2,2)=9 n(1,2,2)=4; w(1,2,4)=29 n(1,2,4)=4; w(1,2,8)=157 n(1,2,8)=9

Crossrefs

Programs

  • Haskell
    a077653 n = a077653_list !! (n-1)
    a077653_list = 1 : 2 : 2 : zipWith3 (\u v w -> abs (w - v - u))
                   a077653_list (tail a077653_list) (drop 2 a077653_list)
    -- Reinhard Zumkeller, Oct 11 2014
    
  • Magma
    m:=120;
    A077653:=[n le 3 select Floor((n+2)/2) else Abs(Self(n-1) - Self(n-2) - Self(n-3)): n in [1..m+5]];
    [A077653[n]: n in [1..m]]; // G. C. Greubel, Sep 11 2024
    
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,Abs[c-b-a]}; NestList[nxt,{1,2,2},110][[All,1]] (* Harvey P. Dale, Sep 01 2020 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A077653
        if n<4: return int((n+2)//2)
        else: return abs(a(n-1)-a(n-2)-a(n-3))
    [a(n) for n in range(1,101)] # G. C. Greubel, Sep 11 2024

Formula

a(n)/sqrt(n) is bounded. More precisely, let M(n) = Max ( a(k) : 1<=k<=n ); then M(n)= floor(sqrt(n+9)) for n>4