cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077814 a(n) = #{0<=k<=n: mod(k*n,4)=2}.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 3, 2, 0, 2, 5, 3, 0, 3, 7, 4, 0, 4, 9, 5, 0, 5, 11, 6, 0, 6, 13, 7, 0, 7, 15, 8, 0, 8, 17, 9, 0, 9, 19, 10, 0, 10, 21, 11, 0, 11, 23, 12, 0, 12, 25, 13, 0, 13, 27, 14, 0, 14, 29, 15, 0, 15, 31, 16, 0, 16, 33, 17, 0, 17, 35, 18, 0, 18, 37, 19, 0, 19, 39, 20, 0, 20, 41, 21, 0
Offset: 0

Views

Author

John W. Layman, Dec 03 2002

Keywords

Comments

Coefficients in the unique expansion of e/4 = Sum_{n>=1} a(n)/n!, where a(n) satisfies 0<=a(n)

Examples

			a(6) = #{1, 3, 5} = 3.
		

Crossrefs

Programs

  • Mathematica
    a = Table[0, {i, 1, 50}]; x = Exp[1]/4; For[n = 2, n <= 51, n++, { an = 0; While [(x >= (1/n!)) && (an < (n - 1)), {an++, x = x - (1/n!)} ]}; a[[n - 1]] = an;]; a
    LinearRecurrence[{2,-3,4,-3,2,-1},{0,0,1,1,0,1},90] (* Harvey P. Dale, Apr 07 2025 *)

Formula

a(n)=0 if n=4k, a(n)=k if n=4k+1, a(n)=2k+1 if n=4k+2 and a(n)=k+1 if n=4k+3.
a(n) = floor(n!*e/4) - n*floor((n-1)!*e/4). - Benoit Cloitre, Dec 07 2002
a(n) = Sum_{k=0..n} if(mod(k*n, 4)=2, 1, 0). - Paul Barry, Sep 10 2003
O.g.f.: x^2*(1-x+x^2)/((x-1)^2*(1+x^2)^2). - R. J. Mathar, Jun 13 2008
From Wesley Ivan Hurt, May 30 2015: (Start)
a(n) = 2*a(n-1)-3*a(n-2)+4*a(n-3)-3*a(n-4)+2*a(n-5)-a(n-6), n>6.
a(n) = (-1)^((1-2*n-(-1)^n)/4)*((-1)^n-2*n*(-1)^((2*n+3+(-1)^n)/4)+n*(-1)^((1+(-1)^n)/2)+n*(-1)^((2*n+1+(-1)^n)/2)-1)/8. (End)

Extensions

More terms from Benoit Cloitre, Dec 07 2002