cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078112 Coefficients a(n) in the unique expansion sin(1) = Sum[a(n)/n!, n>=1], where a(n) satisfies 0<=a(n)

Original entry on oeis.org

0, 1, 2, 0, 0, 5, 6, 0, 0, 9, 10, 0, 0, 13, 14, 0, 0, 17, 18, 0, 0, 21, 22, 0, 0, 25, 26, 0, 0, 29, 30, 0, 0, 33, 34, 0, 0, 37, 38, 0, 0, 41, 42, 0, 0, 45, 46, 0, 0, 49, 50, 0, 0, 53, 54, 0, 0, 57, 58, 0, 0, 61, 62, 0, 0, 65, 66, 0, 0, 69, 70, 0, 0, 73, 74, 0, 0, 77, 78, 0, 0, 81, 82, 0, 0, 85
Offset: 1

Views

Author

John W. Layman, Dec 04 2002

Keywords

Examples

			sum(i=1,10,a(i)/i!)=0.84147073..., sin(1)=0.841470984...
		

Crossrefs

Cf. A077814.

Programs

  • PARI
    concat(0, Vec(x^2*(1-x^2+2*x^3)/((1-x)^2*(1+x^2)^2) + O(x^100))) \\ Colin Barker, Feb 15 2016

Formula

a(n) = floor(n!*sin(1)) - n*floor((n-1)!*sin(1)). a(n)=0 if n==0 or 1 (mod 4); a(n)=n-1 if n==2 or 3 (mod 4). - Benoit Cloitre, Dec 07 2002
From Colin Barker, Feb 15 2016: (Start)
a(n) = 2*a(n-1)-3*a(n-2)+4*a(n-3)-3*a(n-4)+2*a(n-5)-a(n-6) for n>6.
G.f.: x^2*(1-x^2+2*x^3) / ((1-x)^2*(1+x^2)^2). (End)

Extensions

More terms from Benoit Cloitre, Dec 07 2002

A087620 #{0<=k<=n: k*n is divisible by 4}.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 4, 2, 9, 3, 6, 3, 13, 4, 8, 4, 17, 5, 10, 5, 21, 6, 12, 6, 25, 7, 14, 7, 29, 8, 16, 8, 33, 9, 18, 9, 37, 10, 20, 10, 41, 11, 22, 11, 45, 12, 24, 12, 49, 13, 26, 13, 53, 14, 28, 14, 57, 15, 30, 15, 61, 16, 32, 16, 65, 17, 34, 17, 69, 18, 36, 18, 73, 19, 38, 19, 77, 20
Offset: 0

Views

Author

Paul Barry, Sep 13 2003

Keywords

Comments

With the similar remainder 1, 2 and 3 sequences provides a four-fold partition of A000027.

Crossrefs

Programs

  • Magma
    I:=[1,1,2,1,5,2,4,2]; [n le 8 select I[n] else 2*Self(n-4)-Self(n-8): n in [1..80]]; // Vincenzo Librandi, May 03 2015
  • Mathematica
    CoefficientList[Series[(3 x^4 + x^3 + 2 x^2 + x + 1)/((x - 1)^2 (x + 1)^2 (x^2 + 1)^2), {x, 0, 80}], x] (* Vincenzo Librandi, May 03 2015 *)
  • PARI
    Vec((3*x^4+x^3+2*x^2+x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, May 03 2015
    

Formula

a(n) = Sum_{k=0..n} if (k*n mod 4 = 0, 1, 0).
From Colin Barker, May 03 2015: (Start)
a(n) = (6+4*n+i^n*(-i+n)+(-i)^n*(i+n)+2*(-1)^n*(1+n))/8 where i=sqrt(-1).
a(n) = 2*a(n-4)-a(n-8) for n>7.
G.f.: (3*x^4+x^3+2*x^2+x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2).
(End)

A131728 a(4n) = n, a(4n+1) = 2n+1, a(4n+2) = n+1, a(4n+3) = 0.

Original entry on oeis.org

0, 1, 1, 0, 1, 3, 2, 0, 2, 5, 3, 0, 3, 7, 4, 0, 4, 9, 5, 0, 5, 11, 6, 0, 6, 13, 7, 0, 7, 15, 8, 0, 8, 17, 9, 0, 9, 19, 10, 0, 10, 21, 11, 0, 11, 23, 12, 0, 12, 25, 13, 0, 13, 27, 14, 0, 14, 29, 15, 0, 15, 31, 16, 0, 16, 33, 17, 0, 17, 35, 18, 0, 18, 37, 19, 0, 19, 39, 20, 0, 20, 41, 21, 0, 21
Offset: 0

Views

Author

Paul Curtz, Sep 17 2007

Keywords

Programs

  • Mathematica
    LinearRecurrence[{2,-3,4,-3,2,-1},{0,1,1,0,1,3},90] (* Harvey P. Dale, Aug 15 2013 *)

Formula

a(n)=A077814(n+1). - R. J. Mathar, Jun 13 2008
Showing 1-3 of 3 results.