A077855 Expansion of 1/((1-2*x+x^2-x^3)*(1-x)).
1, 3, 6, 11, 20, 36, 64, 113, 199, 350, 615, 1080, 1896, 3328, 5841, 10251, 17990, 31571, 55404, 97228, 170624, 299425, 525455, 922110, 1618191, 2839728, 4983376, 8745216, 15346785, 26931731, 47261894, 82938843, 145547524, 255418100, 448227520, 786584465
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..4092
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-1).
Programs
-
Mathematica
nn=40; a=x^2/(1-x); Drop[CoefficientList[Series[(a+1)/(1-x a/(1-x))/(1-x)-1/(1-x), {x,0,nn}], x], 2] (* Geoffrey Critzer, Jan 12 2013 *) LinearRecurrence[{3, -3, 2, -1}, {1, 3, 6, 11}, 36] (* or *) CoefficientList[ Series[1/(x^4 - 2 x^3 + 3 x^2 - 3 x + 1), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 25 2016 *)
-
PARI
Vec((1-x)^(-1)/(1-2*x+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
Formula
G.f.: 1/((1-2*x+x^2-x^3)*(1-x)).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4). - Seiichi Manyama, Nov 25 2016
a(n) = Sum_{i=1..(n+3)} binomial((n+3)-i, (n+3)-3*i). - Wesley Ivan Hurt, Jul 07 2020
a(n) ~ (48 - 11*r + 29*r^2) / (23 * r^n), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - Vaclav Kotesovec, Apr 15 2024
From MingKun Yue, Mar 07 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 1.
a(n) = a(n-1) + Sum_{i=1..(n-3)} a(i) + n. (End)
Comments