cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077855 Expansion of 1/((1-2*x+x^2-x^3)*(1-x)).

Original entry on oeis.org

1, 3, 6, 11, 20, 36, 64, 113, 199, 350, 615, 1080, 1896, 3328, 5841, 10251, 17990, 31571, 55404, 97228, 170624, 299425, 525455, 922110, 1618191, 2839728, 4983376, 8745216, 15346785, 26931731, 47261894, 82938843, 145547524, 255418100, 448227520, 786584465
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n) is the number of binary words of length n+2 such that there is at least one run of 0's and every run of 0's is of length >=2. a(1)=3 because we have: {0,0,0}, {0,0,1}, {1,0,0}. - Geoffrey Critzer, Jan 12 2013
INVERT transform of A099254: (1, 2, 1, -2, -4, -2, 3, 6, 3, ...). - Gary W. Adamson, Jan 11 2017
a(n) is the number of nonempty subsets A of {1, 2, ..., n+1} with the property that every element in A has at least one consecutive neighbor also in A. That is, for every element x in A, either x-1 is in A or x+1 is in A. - MingKun Yue, Mar 07 2025

Crossrefs

Cf. A018918, A099254, A005314 (first differences).

Programs

  • Mathematica
    nn=40; a=x^2/(1-x); Drop[CoefficientList[Series[(a+1)/(1-x a/(1-x))/(1-x)-1/(1-x), {x,0,nn}], x], 2] (* Geoffrey Critzer, Jan 12 2013 *)
    LinearRecurrence[{3, -3, 2, -1}, {1, 3, 6, 11}, 36] (* or *)
    CoefficientList[ Series[1/(x^4 - 2 x^3 + 3 x^2 - 3 x + 1), {x, 0, 35}], x] (* Robert G. Wilson v, Nov 25 2016 *)
  • PARI
    Vec((1-x)^(-1)/(1-2*x+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

G.f.: 1/((1-2*x+x^2-x^3)*(1-x)).
a(n) = A005251(n+4) - 1. a(n+1) - a(n) = A005314(n+2). - R. J. Mathar, Sep 19 2008
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4). - Seiichi Manyama, Nov 25 2016
a(n) = Sum_{i=1..(n+3)} binomial((n+3)-i, (n+3)-3*i). - Wesley Ivan Hurt, Jul 07 2020
a(n) ~ (48 - 11*r + 29*r^2) / (23 * r^n), where r = 0.569840290998... is the root of the equation r*(2 - r + r^2) = 1. - Vaclav Kotesovec, Apr 15 2024
From MingKun Yue, Mar 07 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) + 1.
a(n) = a(n-1) + Sum_{i=1..(n-3)} a(i) + n. (End)