A077909 Expansion of 1/((1-x)*(1+x+x^2+2*x^3)).
1, 0, 0, -1, 2, 0, 1, -4, 4, -1, 6, -12, 9, -8, 24, -33, 26, -40, 81, -92, 92, -161, 254, -276, 345, -576, 784, -897, 1266, -1936, 2465, -3060, 4468, -6337, 7990, -10588, 15273, -20664, 26568, -36449, 51210, -67896, 89585, -124108, 170316, -225377, 303278, -418532, 566009, -754032, 1025088
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (0,0,-1,2)
Programs
-
Maple
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|-1|0|0>>^n. <<1, 0, 0, -1>>)[1, 1]: seq(a(n), n=0..60); # Alois P. Heinz, Nov 20 2013
-
Mathematica
CoefficientList[1/(1+x^3-2*x^4) + O[x]^60, x] (* Jean-François Alcover, Jun 08 2015, after Arkadiusz Wesolowski *)
-
PARI
Vec( 1/((1-x)*(1+x+x^2+2*x^3)) +O(x^66)) \\ Joerg Arndt, Aug 28 2013
Formula
a(n) = (-1)^n*sum(A128099(n-2*k, n-3*k), k=0..floor(n/3)). - Johannes W. Meijer, Aug 28 2013
G.f.: 1/(1 + x^3 - 2*x^4). - Arkadiusz Wesolowski, Nov 20 2013
Comments