A077937 Expansion of 1/(1-2*x-2*x^2+2*x^3).
1, 2, 6, 14, 36, 88, 220, 544, 1352, 3352, 8320, 20640, 51216, 127072, 315296, 782304, 1941056, 4816128, 11949760, 29649664, 73566592, 182532992, 452899840, 1123732480, 2788198656, 6918062592, 17165057536, 42589842944, 105673675776, 262196922368
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2).
Programs
-
Magma
[n le 3 select Factorial(n) else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..51]]; // G. C. Greubel, May 02 2022
-
Mathematica
LinearRecurrence[{2,2,-2}, {1,2,6}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *) CoefficientList[Series[1/(1-2*x-2*x^2+2*x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 05 2018 *)
-
PARI
Vec(1/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
SageMath
def A077937_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-2*x-2*x^2+2*x^3) ).list() A077937_list(50) # G. C. Greubel, May 02 2022
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0) = 1, a(1) = 2, and a(3) = 8. - G. C. Greubel, May 02 2022
Comments