A077953 Expansion of 1/(1-x+2*x^2-2*x^3).
1, 1, -1, -1, 3, 3, -5, -5, 11, 11, -21, -21, 43, 43, -85, -85, 171, 171, -341, -341, 683, 683, -1365, -1365, 2731, 2731, -5461, -5461, 10923, 10923, -21845, -21845, 43691, 43691, -87381, -87381, 174763, 174763, -349525, -349525, 699051, 699051, -1398101, -1398101, 2796203, 2796203, -5592405
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, -2, 2).
Crossrefs
Cf. A077980.
Programs
-
GAP
a:=[1,1,-1];; for n in [4..50] do a[n]:=a[n-1]-2*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Aug 07 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x+2*x^2-2*x^3) )); // G. C. Greubel, Aug 07 2019 -
Maple
seq(coeff(series(1/(1-x+2*x^2-2*x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 07 2019
-
Mathematica
CoefficientList[Series[1/(1-x+2x^2-2x^3),{x,0,50}],x] (* or *) LinearRecurrence[{1,-2,2},{1,1,-1},50] (* Harvey P. Dale, Aug 27 2014 *)
-
PARI
Vec(1/(1-x+2*x^2-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 25 2012
-
Sage
(1/(1-x+2*x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 07 2019
Formula
From Reinhard Zumkeller, Oct 07 2008: (Start)
a(n+1) = a(n) - 2*a(n-1) + 2*a(n-2).
a(n) = A077925(floor(n/2)-1) for n>1. (End)
Comments