cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A077893 Duplicate of A077953.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 5, 11, 11, 21, 21, 43, 43, 85, 85, 171, 171, 341, 341, 683, 683, 1365, 1365
Offset: 0

Views

Author

Keywords

A077925 Expansion of 1/((1-x)*(1+2*x)).

Original entry on oeis.org

1, -1, 3, -5, 11, -21, 43, -85, 171, -341, 683, -1365, 2731, -5461, 10923, -21845, 43691, -87381, 174763, -349525, 699051, -1398101, 2796203, -5592405, 11184811, -22369621, 44739243, -89478485, 178956971, -357913941, 715827883, -1431655765, 2863311531, -5726623061
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n+1) is the reflection of a(n) through a(n-1) on the numberline. - Floor van Lamoen, Aug 31 2004
If a zero is added as the (new) a(0) in front, the sequence represents the inverse binomial transform of A001045. Partial sums are in A077898. - R. J. Mathar, Aug 30 2008
a(n) = A077953(2*n+3). - Reinhard Zumkeller, Oct 07 2008
Related to the Fibonacci sequence by an INVERT transform: if A(x) = 1+x^2*g(x) is the generating function of the a(n) prefixed with 1, 0, then 1/A(x) = 2+(x+1)/(x^2-x+1) is the generating function of 1, 0, -1, 1, -2, 3, ..., the signed Fibonacci sequence A000045 prefixed with 1. - Gary W. Adamson, Jan 07 2011
Also: Gaussian binomial coefficients [n+1,1], or q-integers, for q=-2, diagonal k=1 in the triangular (or column r=1 in the square) array A015109. - M. F. Hasler, Nov 04 2012
With a leading zero, 0, 1, -1, 3, -5, 11, -21, 43, -85, 171, -341, 683, ... we obtain the Lucas U(-1,-2) sequence. - R. J. Mathar, Jan 08 2013
Let m = a(n). Then 18*m^2 - 12*m + 1 = A000225(2n+3). - Roderick MacPhee, Jan 17 2013

Examples

			G.f. = 1 - x + 3*x^2 - 5*x^3 + 11*x^4 - 21*x^5 + 43*x^6 - 85*x^7 + ...
		

Crossrefs

Cf. A001045 (unsigned version).
Cf. A014983, A014985, A014986. - Zerinvary Lajos, Dec 16 2008

Programs

Formula

G.f.: 1/(1+x-2*x^2).
a(n) = (1-(-2)^(n+1))/3. - Vladeta Jovovic, Apr 17 2003
a(n) = Sum_{k=0..n} (-2)^k. - Paul Barry, May 26 2003
a(n+1) - a(n) = A122803(n). - R. J. Mathar, Aug 30 2008
a(n) = Sum_{k=0..n} A112555(n,k)*(-2)^k. - Philippe Deléham, Sep 11 2009
a(n) = A082247(n+1) - 1. - Philippe Deléham, Oct 07 2009
G.f.: Q(0)/(3*x), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k + 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k-1 + 2*x)/( x*(4*k+1 + 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
E.g.f.: (2*exp(-2*x) + exp(x))/3. - Ilya Gutkovskiy, Nov 12 2016
a(n) = A086893(n+2) - A061547(n+3), n >= 0. - Yosu Yurramendi, Jan 16 2017
a(n) = (-1)^n*A001045(n+1). - M. F. Hasler, Feb 13 2020
a(n) - a(n-1) = a(n-1) - a(n+1) = (-2)^n, a(n+1) = - a(n) + 2*a(n-1) = 1 - 2*a(n). - Michael Somos, Feb 22 2023

A052551 Expansion of 1/((1 - x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A137865. - Gary W. Adamson, Feb 18 2008
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017
Number of nonempty subsets of {1,2,...,n+1} that contain only odd numbers. a(0) = a(1) = 1: {1}; a(6) = a(7) = 15: {1}, {3}, {5}, {7}, {1,3}, {1,5}, {1,7}, {3,5}, {3,7}, {5,7}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. - Enrique Navarrete, Mar 16 2018
Number of nonempty subsets of {1,2,...,n+2} that contain only even numbers. a(0) = a(1) = 1: {2}; a(4) = a(5) = 7: {2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {2,4,6}. - Enrique Navarrete, Mar 26 2018
Doubling of A000225(n+1), n >= 0 entries. First differences give A077957. - Wolfdieter Lang, Apr 08 2018
a(n-2) is the number of achiral rows or cycles of length n partitioned into two sets or the number of color patterns using exactly 2 colors. An achiral row or cycle is equivalent to its reverse. Two color patterns are equivalent if the colors are permuted. For n = 4, the a(n-2) = 3 row patterns are AABB, ABAB, and ABBA; the cycle patterns are AAAB, AABB, and ABAB. For n = 5, the a(n-2) = 3 patterns for both rows and cycles are AABAA, ABABA, and ABBBA. For n = 6, the a(n-2) = 7 patterns for rows are AAABBB, AABABB, AABBAA, ABAABA, ABABAB, ABBAAB, and ABBBBA; the cycle patterns are AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, and ABABAB. - Robert A. Russell, Oct 15 2018
For integers m > 1, the expansion of 1/((1 - x)*(1 - m*x^2)) generates a(n) = (sqrt(m)^(n + 1)*((-1)^n*(sqrt(m) - 1) + sqrt(m) + 1) - 2)/(2*(m - 1)). It appears, for integer values of n >= 0 and m > 1, that it could be simplified in the integral domain a(n) = (m^(1 + floor(n/2)) - 1)/(m - 1). - Federico Provvedi, Nov 23 2018
From Werner Schulte, Mar 04 2019: (Start)
More generally: For some fixed integers q and r > 0 the expansion of A(q,r; x) = 1/((1-x)*(1-q*x^r)) generates coefficients a(q,r; n) = (q^(1+floor(n/r))-1)/(q-1) for n >= 0; the special case q = 1 leads to a(1,r; n) = 1 + floor(n/r).
The a(q,r; n) satisfy for n > r a linear recurrence equation with constant coefficients. The signature vector is given by the sum of two vectors v and w where v has terms 1 followed by r zeros, i.e., (1,0,0,...,0), and w has r-1 leading zeros followed by q and -q, i.e., (0,0,...,0,q,-q).
Let a_i(q,r; n) be the convolution inverse of a(q,r; n). The terms are given by the sum a_i(q,r; n) = b(n) + c(n) for n >= 0 where b(n) has terms 1 and -1 followed by infinitely zeros, i.e., (1,-1,0,0,0,...), and c(n) has r leading zeros followed by -q, q and infinitely zeros, i.e., (0,0,...,0,-q,q,0,0,0,...).
Here is an example for q = 3 and r = 5: The expansion of A(3,5; x) = 1/((1-x)*(1-3*x^5)) = Sum_{n>=0} a(3,5; n)*x^n generates the sequence of coefficients (a(3,5; n)) = (1,1,1,1,1,4,4,4,4,4,13,13,13,13,13,40,...) where r = 5 controls the repetition and q = 3 the different values.
The a(3,5; n) satisfy for n > 5 the linear recurrence equation with constant coefficients and signature (1,0,0,0,0,0) + (0,0,0,0,3,-3) = (1,0,0,0,3,-3).
The convolution inverse a_i(3,5; n) has terms (1,-1,0,0,0,0,0,0,0,...) + (0,0,0,0,0,-3,3,0,0,...) = (1,-1,0,0,0,-3,3,0,0,...).
For further examples and informations see A014983 (q,r = -3,1), A077925 (q,r = -2,1), A000035 (q,r = -1,1), A000012 (q,r = 0,1), A000027 (q,r = 1,1), A000225 (q,r = 2,1), A003462 (q,r = 3,1), A077953 (q,r = -2,2), A133872 (q,r = -1,2), A004526 (q,r = 1,2), A052551 (this sequence with q,r = 2,2), A077886 (q,r = -2,3), A088911 (q,r = -1,3), A002264 (q,r = 1,3) and A077885 (q,r = 2,3). The offsets might be different.
(End)
a(n) is the number of palindromes of length n over the alphabet {1,2} containing the letter 1. More generally, the number of palindromes of length n over the alphabet {1,2,...,k} containing the letter 1 is given by k^ceiling(n/2)-(k-1)^ceiling(n/2). - Sela Fried, Dec 10 2024

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Column 2 (offset by two) of A304972.
Cf. A000225 (oriented), A056326 (unoriented), and A122746(n-2) (chiral) for rows.
Cf. A056295 (oriented), A056357 (unoriented), and A059053 (chiral) for cycles.

Programs

  • GAP
    Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
    
  • Magma
    [2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
    Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
    CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
    2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
    ((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
    
  • Sage
    [2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 2*x^2)).
Recurrence: a(1) = 1, a(0) = 1, -2*a(n) - 1 + a(n+2) = 0.
a(n) = -1 + Sum((1/2)*(1 + 2*alpha)*alpha^(-1 - n)) where the sum is over alpha = the two roots of -1 + 2*x^2.
a(n) = A016116(n+2) - 1. - R. J. Mathar, Jun 15 2009
a(n) = A060546(n+1) - 1. - Filip Zaludek, Dec 10 2016
From Robert A. Russell, Oct 15 2018: (Start)
a(n-2) = S2(floor(n/2)+1,2), where S2 is the Stirling subset number A008277.
a(n-2) = 2*A056326(n) - A000225(n) = A000225(n) - 2*A122746(n-2) = A056326(n) - A122746(n-2).
a(n-2) = 2*A056357(n) - A056295(n) = A056295(n) - 2*A059053(n) = A056357(n) - A059053(n). (End)
From Federico Provvedi, Nov 22 2018: (Start)
a(n) = 2^( 1 + floor(n/2) ) - 1.
a(n) = ( (-1)^n*(sqrt(2)-1) + sqrt(2) + 1 ) * 2^( (n - 1)/2 ) - 1. (End)
E.g.f.: 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) - cosh(x) - sinh(x). - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

More terms from James Sellers, Jun 06 2000

A007420 Berstel sequence: a(n+1) = 2*a(n) - 4*a(n-1) + 4*a(n-2).

Original entry on oeis.org

0, 0, 1, 2, 0, -4, 0, 16, 16, -32, -64, 64, 256, 0, -768, -512, 2048, 3072, -4096, -12288, 4096, 40960, 16384, -114688, -131072, 262144, 589824, -393216, -2097152, -262144, 6291456, 5242880, -15728640, -27262976, 29360128, 104857600, -16777216
Offset: 0

Views

Author

Keywords

Comments

a(n) = 0 only for n = 0,1,4,6,13 and 52. [Cassels, following Mignotte. See also Beukers] - N. J. A. Sloane, Aug 29 2010

References

  • J. W. S. Cassels, Local Fields, Cambridge, 1986, see p. 67.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 28.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 193.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007420 n = a007420_list !! n
    a007420_list = 0 : 0 : 1 : (map (* 2) $ zipWith (+) (drop 2 a007420_list)
       (map (* 2) $ zipWith (-) a007420_list (tail a007420_list)))
    -- Reinhard Zumkeller, Oct 21 2011
    
  • Magma
    I:=[0,0,1]; [n le 3 select I[n]  else 2*Self(n-1)-4*Self(n-2)+4*Self(n-3): n in [1..70]]; // Vincenzo Librandi, Oct 05 2015
    
  • Maple
    A007420 := proc(n) options remember; if n <=1 then 0 elif n=2 then 1 else 2*A007420(n-1)-4*A007420(n-2)+4*A007420(n-3); fi; end;
  • Mathematica
    a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = 2*a[n - 1] - 4*a[n - 2] + 4*a[n - 3]; a /@ Range[0, 34] (* Jean-François Alcover, Apr 06 2011 *)
    LinearRecurrence[{2, -4, 4}, {0, 0, 1}, 40] (* Harvey P. Dale, Oct 24 2011 *)
    Table[RootSum[-4 + 4 # - 2 #^2 + #^3 &, 6 #^n - #^(n + 1) + 4 #^(n + 1) &]/44, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 4,-4,2]^n*[0;0;1])[1,1] \\ Charles R Greathouse IV, Feb 19 2017

Formula

G.f.: x^2/(1-2*x+4*x^2-4*x^3).
a(0)=0, a(1)=0, a(2)=1, a(n) = 2*a(n-1)-4*a(n-2)+4*a(n-3). - Harvey P. Dale, Jun 24 2015

A077980 Expansion of 1/(1 + x + 2*x^2 + 2*x^3).

Original entry on oeis.org

1, -1, -1, 1, 3, -3, -5, 5, 11, -11, -21, 21, 43, -43, -85, 85, 171, -171, -341, 341, 683, -683, -1365, 1365, 2731, -2731, -5461, 5461, 10923, -10923, -21845, 21845, 43691, -43691, -87381, 87381, 174763, -174763, -349525, 349525, 699051, -699051, -1398101, 1398101, 2796203, -2796203, -5592405
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002, Jun 17 2007

Keywords

Comments

Essentially the same as A077953.

Programs

  • GAP
    a:=[1,-1,-1];; for n in [4..50] do a[n]:=-a[n-1]-2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    I:=[1,-1,-1]; [n le 3 select I[n] else -Self(n-1)-2*Self(n-2) -2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 17 2013
    
  • Mathematica
    LinearRecurrence[{-1, -2, -2}, {1, -1, -1}, 50] (* Vincenzo Librandi, Aug 17 2013 *)
  • PARI
    Vec(1/(1+x+2*x^2+2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • PARI
    a(n)=1/3*(-1)^floor((n+1)/2)*((2^floor(n/2+1)+(-1)^floor(n/2))) \\ Ralf Stephan, Aug 17 2013
    
  • Sage
    (1/(1+x+2*x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    

Formula

a(n) = (1/3) * (-1)^floor((n+1)/2) * ((2^floor(n/2+1) + (-1)^floor(n/2))). - Ralf Stephan, Aug 17 2013

A373358 a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for a(0) = a(1) = 0, a(2) = 1, a(3) = 4 for n >= 4.

Original entry on oeis.org

0, 0, 1, 4, 11, 26, 59, 136, 323, 782, 1903, 4620, 11175, 26970, 65051, 156944, 378811, 914566, 2208199, 5331476, 12871663, 31074802, 75020243, 181113240, 437244675, 1055602590, 2548453951, 6152518684, 14853499511, 35859517706, 86572518539, 209004522016, 504581529803, 1218167581622
Offset: 0

Views

Author

Paul Curtz, Jun 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -5, 2, 2}, {0, 0, 1, 4}, 50] (* Paolo Xausa, Jun 19 2024 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,4d-5c+2b+2a}; NestList[nxt,{0,0,1,4},40][[;;,1]] (* Harvey P. Dale, Jan 11 2025 *)
  • PARI
    a(n) = ((([2, 1; 1, 0]^(n+1))[2, 1]) - (1+I)^(n-1) - (1-I)^(n-1))/3 \\ Thomas Scheuerle, Jun 03 2024

Formula

G.f.: x^2 / ( (1 - 2*x - x^2) * (1 - 2*x + 2*x^2) ).
E.g.f.: exp(x)*(2*cosh(sqrt(2)*x) - 2*(cos(x)+sin(x)) + sqrt(2)*sinh(sqrt(2)*x))/6.
a(n) = A373245(n+1) - A114203(n+1).
a(0) = 0, a(n) = A373245(n-1) + A146559(n-1).
Binomial transform of 0, 0, followed by A077893 = abs(A077953) = abs(A077980).
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for n >= 4.
From Thomas Scheuerle, Jun 03 2024: (Start)
a(n) = (A000129(n+1) - A009545(n+1))/3.
a(n) = (-i*sqrt(2)*(1-i)^(n+1) + i*sqrt(2)*(1+i)^(n+1) - (1-sqrt(2))^(n+1) + (1+sqrt(2))^(n+1))/(6*sqrt(2)).
a(n) = 2^n*(hypergeom([1/2 - n/2, -n/2], [-n], -1) - hypergeom([1/2 - n/2, -n/2], [-n], 2))/3. (End)

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A304223 Triangle read by rows: T(0,0)=1; T(n,k) = T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2) for k = 0..floor(2*n/3); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, -2, 1, -4, 2, 1, -6, 8, 1, -8, 18, -8, 1, -10, 32, -32, 4, 1, -12, 50, -80, 36, 1, -14, 72, -160, 136, -24, 1, -16, 98, -280, 360, -160, 8, 1, -18, 128, -448, 780, -592, 128, 1, -20, 162, -672, 1484, -1632, 720, -64
Offset: 0

Views

Author

Shara Lalo, May 08 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A304209.
The coefficients in the expansion of 1/(1-x+2*x^2-2*x^3) are given by the sequence generated by the row sums.

Examples

			Triangle begins:
  1;
  1;
  1,  -2;
  1,  -4,   2;
  1,  -6,   8;
  1,  -8,  18,   -8;
  1, -10,  32,  -32,    4;
  1, -12,  50,  -80,   36;
  1, -14,  72, -160,  136,   -24;
  1, -16,  98, -280,  360,  -160,    8;
  1, -18, 128, -448,  780,  -592,  128;
  1, -20, 162, -672, 1484, -1632,  720,  -64;
  1, -22, 200, -960, 2576, -3752, 2624, -640,  16;
  ...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 204, 205.

Crossrefs

Row sums is A077953.
Cf. A304209.

Programs

  • PARI
    T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2)));
    tabf(nn) = for (n=0, nn, for (k=0, 2*n\3, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
Showing 1-8 of 8 results.