Original entry on oeis.org
1, 1, 1, 1, 3, 3, 5, 5, 11, 11, 21, 21, 43, 43, 85, 85, 171, 171, 341, 341, 683, 683, 1365, 1365
Offset: 0
A077925
Expansion of 1/((1-x)*(1+2*x)).
Original entry on oeis.org
1, -1, 3, -5, 11, -21, 43, -85, 171, -341, 683, -1365, 2731, -5461, 10923, -21845, 43691, -87381, 174763, -349525, 699051, -1398101, 2796203, -5592405, 11184811, -22369621, 44739243, -89478485, 178956971, -357913941, 715827883, -1431655765, 2863311531, -5726623061
Offset: 0
G.f. = 1 - x + 3*x^2 - 5*x^3 + 11*x^4 - 21*x^5 + 43*x^6 - 85*x^7 + ...
-
[(1-(-2)^(n+1))/3: n in [0..40]]; // Vincenzo Librandi, Jun 21 2011
-
a:=n->sum ((-2)^j, j=0..n): seq(a(n), n=0..35); # Zerinvary Lajos, Dec 16 2008
-
CoefficientList[Series[(1 - x)^(-1)/(1 + 2 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
-
a(n)=(1+(-2)^n*2)/3 \\ Charles R Greathouse IV, Jun 21 2011
-
[gaussian_binomial(n,1,-2) for n in range(1,35)] # Zerinvary Lajos, May 28 2009
A052551
Expansion of 1/((1 - x)*(1 - 2*x^2)).
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 488
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
Column 2 (offset by two) of
A304972.
-
Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
-
[2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
-
spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
-
x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
-
[2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019
A007420
Berstel sequence: a(n+1) = 2*a(n) - 4*a(n-1) + 4*a(n-2).
Original entry on oeis.org
0, 0, 1, 2, 0, -4, 0, 16, 16, -32, -64, 64, 256, 0, -768, -512, 2048, 3072, -4096, -12288, 4096, 40960, 16384, -114688, -131072, 262144, 589824, -393216, -2097152, -262144, 6291456, 5242880, -15728640, -27262976, 29360128, 104857600, -16777216
Offset: 0
- J. W. S. Cassels, Local Fields, Cambridge, 1986, see p. 67.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 28.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 193.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..500
- F. Beukers, The zero-multiplicity of ternary recurrences, Compositio Math. 77 (1991), 165-177.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
- M. Mignotte, Suites récurrentes linéaires, Sém. Delange-Pisot-Poitou, 15th year (1973/1974), No. 14, 9 pages.
- G. Myerson and A. J. van der Poorten, Some problems concerning recurrence sequences, Amer. Math. Monthly 102 (1995), no. 8, 698-705.
- Index entries for linear recurrences with constant coefficients, signature (2,-4,4).
-
a007420 n = a007420_list !! n
a007420_list = 0 : 0 : 1 : (map (* 2) $ zipWith (+) (drop 2 a007420_list)
(map (* 2) $ zipWith (-) a007420_list (tail a007420_list)))
-- Reinhard Zumkeller, Oct 21 2011
-
I:=[0,0,1]; [n le 3 select I[n] else 2*Self(n-1)-4*Self(n-2)+4*Self(n-3): n in [1..70]]; // Vincenzo Librandi, Oct 05 2015
-
A007420 := proc(n) options remember; if n <=1 then 0 elif n=2 then 1 else 2*A007420(n-1)-4*A007420(n-2)+4*A007420(n-3); fi; end;
-
a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = 2*a[n - 1] - 4*a[n - 2] + 4*a[n - 3]; a /@ Range[0, 34] (* Jean-François Alcover, Apr 06 2011 *)
LinearRecurrence[{2, -4, 4}, {0, 0, 1}, 40] (* Harvey P. Dale, Oct 24 2011 *)
Table[RootSum[-4 + 4 # - 2 #^2 + #^3 &, 6 #^n - #^(n + 1) + 4 #^(n + 1) &]/44, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)
-
a(n)=([0,1,0; 0,0,1; 4,-4,2]^n*[0;0;1])[1,1] \\ Charles R Greathouse IV, Feb 19 2017
A077980
Expansion of 1/(1 + x + 2*x^2 + 2*x^3).
Original entry on oeis.org
1, -1, -1, 1, 3, -3, -5, 5, 11, -11, -21, 21, 43, -43, -85, 85, 171, -171, -341, 341, 683, -683, -1365, 1365, 2731, -2731, -5461, 5461, 10923, -10923, -21845, 21845, 43691, -43691, -87381, 87381, 174763, -174763, -349525, 349525, 699051, -699051, -1398101, 1398101, 2796203, -2796203, -5592405
Offset: 0
-
a:=[1,-1,-1];; for n in [4..50] do a[n]:=-a[n-1]-2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
-
I:=[1,-1,-1]; [n le 3 select I[n] else -Self(n-1)-2*Self(n-2) -2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 17 2013
-
LinearRecurrence[{-1, -2, -2}, {1, -1, -1}, 50] (* Vincenzo Librandi, Aug 17 2013 *)
-
Vec(1/(1+x+2*x^2+2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 27 2012
-
a(n)=1/3*(-1)^floor((n+1)/2)*((2^floor(n/2+1)+(-1)^floor(n/2))) \\ Ralf Stephan, Aug 17 2013
-
(1/(1+x+2*x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
A373358
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) +2*a(n-4) for a(0) = a(1) = 0, a(2) = 1, a(3) = 4 for n >= 4.
Original entry on oeis.org
0, 0, 1, 4, 11, 26, 59, 136, 323, 782, 1903, 4620, 11175, 26970, 65051, 156944, 378811, 914566, 2208199, 5331476, 12871663, 31074802, 75020243, 181113240, 437244675, 1055602590, 2548453951, 6152518684, 14853499511, 35859517706, 86572518539, 209004522016, 504581529803, 1218167581622
Offset: 0
-
LinearRecurrence[{4, -5, 2, 2}, {0, 0, 1, 4}, 50] (* Paolo Xausa, Jun 19 2024 *)
nxt[{a_,b_,c_,d_}]:={b,c,d,4d-5c+2b+2a}; NestList[nxt,{0,0,1,4},40][[;;,1]] (* Harvey P. Dale, Jan 11 2025 *)
-
a(n) = ((([2, 1; 1, 0]^(n+1))[2, 1]) - (1+I)^(n-1) - (1-I)^(n-1))/3 \\ Thomas Scheuerle, Jun 03 2024
A242763
a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1
For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Julia Collins, Fibonacci Tree
- Fractal Foundation, Fibonacci Fractals
- D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,1).
Cf.
A000079 (i = 0, j = 1, k = 2),
A000244 (i = 0, j = 1, k = 3),
A000302 (i = 0, j = 1, k = 4),
A000351 (i = 0, j = 1, k = 5),
A000400 (i = 0, j = 1, k = 6),
A000420 (i = 0, j = 1, k = 7),
A001018 (i = 0, j = 1, k = 8),
A001019 (i = 0, j = 1, k = 9),
A011557 (i = 0, j = 1, k = 10),
A001020 (i = 0, j = 1, k = 11),
A001021 (i = 0, j = 1, k = 12),
A016116 (i = 0, j = 2, k = 2),
A108411 (i = 0, j = 2, k = 3),
A213173 (i = 0, j = 2, k = 4),
A074872 (i = 0, j = 2, k = 5),
A173862 (i = 0, j = 3, k = 2),
A127975 (i = 0, j = 3, k = 3),
A200675 (i = 0, j = 4, k = 2),
A111575 (i = 0, j = 4, k = 3),
A000045 (i = 1, j = 1, k = 2),
A001045 (i = 1, j = 1, k = 3),
A006130 (i = 1, j = 1, k = 4),
A006131 (i = 1, j = 1, k = 5),
A015440 (i = 1, j = 1, k = 6),
A015441 (i = 1, j = 1, k = 7),
A015442 (i = 1, j = 1, k = 8),
A015443 (i = 1, j = 1, k = 9),
A015445 (i = 1, j = 1, k = 10),
A015446 (i = 1, j = 1, k = 11),
A015447 (i = 1, j = 1, k = 12),
A000931 (i = 1, j = 2, k = 2),
A159284 (i = 1, j = 2, k = 3),
A238389 (i = 1, j = 2, k = 4),
A097041 (i = 1, j = 2, k = 10),
A079398 (i = 1, j = 3, k = 2),
A103372 (i = 1, j = 4, k = 2),
A103373 (i = 1, j = 5, k = 2),
A103374 (i = 1, j = 6, k = 2),
A000930 (i = 2, j = 1, k = 2),
A077949 (i = 2, j = 1, k = 3),
A084386 (i = 2, j = 1, k = 4),
A089977 (i = 2, j = 1, k = 5),
A178205 (i = 2, j = 1, k = 11),
A103609 (i = 2, j = 2, k = 2),
A077953 (i = 2, j = 2, k = 3),
A226503 (i = 2, j = 3, k = 2),
A122521 (i = 2, j = 6, k = 2),
A003269 (i = 3, j = 1, k = 2),
A052942 (i = 3, j = 1, k = 3),
A005686 (i = 3, j = 2, k = 2),
A237714 (i = 3, j = 2, k = 3),
A238391 (i = 3, j = 2, k = 4),
A247049 (i = 3, j = 3, k = 2),
A077886 (i = 3, j = 3, k = 3),
A003520 (i = 4, j = 1, k = 2),
A108104 (i = 4, j = 2, k = 2),
A005708 (i = 5, j = 1, k = 2),
A237716 (i = 5, j = 2, k = 3),
A005709 (i = 6, j = 1, k = 2),
A122522 (i = 6, j = 2, k = 2),
A005710 (i = 7, j = 1, k = 2),
A237718 (i = 7, j = 2, k = 3),
A017903 (i = 8, j = 1, k = 2).
-
[n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
-
LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (* or *)
CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
-
Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
-
@CachedFunction # a = A242763
def a(n): return 1 if n<8 else a(n-5) +a(n-7)
[a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024
A304223
Triangle read by rows: T(0,0)=1; T(n,k) = T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2) for k = 0..floor(2*n/3); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 1, 1, -2, 1, -4, 2, 1, -6, 8, 1, -8, 18, -8, 1, -10, 32, -32, 4, 1, -12, 50, -80, 36, 1, -14, 72, -160, 136, -24, 1, -16, 98, -280, 360, -160, 8, 1, -18, 128, -448, 780, -592, 128, 1, -20, 162, -672, 1484, -1632, 720, -64
Offset: 0
Triangle begins:
1;
1;
1, -2;
1, -4, 2;
1, -6, 8;
1, -8, 18, -8;
1, -10, 32, -32, 4;
1, -12, 50, -80, 36;
1, -14, 72, -160, 136, -24;
1, -16, 98, -280, 360, -160, 8;
1, -18, 128, -448, 780, -592, 128;
1, -20, 162, -672, 1484, -1632, 720, -64;
1, -22, 200, -960, 2576, -3752, 2624, -640, 16;
...
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 204, 205.
-
T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k)-2*T(n-2,k-1)+2*T(n-3,k-2)));
tabf(nn) = for (n=0, nn, for (k=0, 2*n\3, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
Showing 1-8 of 8 results.
Comments