cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077988 Expansion of 1/(1+2*x-2*x^3).

Original entry on oeis.org

1, -2, 4, -6, 8, -8, 4, 8, -32, 72, -128, 192, -240, 224, -64, -352, 1152, -2432, 4160, -6016, 7168, -6016, 0, 14336, -40704, 81408, -134144, 186880, -210944, 153600, 66560, -555008, 1417216, -2701312, 4292608, -5750784, 6098944, -3612672, -4276224, 20750336, -48726016, 88899584
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,-2,4];; for n in [4..50] do a[n]:=-2*a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+2*x-2*x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Mathematica
    LinearRecurrence[{-2, 0, 2}, {1, -2, 4}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    CoefficientList[Series[1/(1+2x-2x^3),{x,0,50}],x] (* Harvey P. Dale, May 21 2024 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1+2*x-2*x^3)) \\ G. C. Greubel, Jun 25 2019
    
  • Sage
    (1/(1+2*x-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 25 2019
    

Formula

a(n) = (-1)^n * A077940(n). - G. C. Greubel, Jun 25 2019