A078087 Continued fraction expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).
0, 1, 7, 2, 3, 1, 1, 1, 7, 1, 1, 6, 1, 5, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 1, 13, 1, 16, 1, 1, 16, 1, 80, 1, 1, 1, 1, 7, 5, 1, 4, 1, 33, 3, 8, 1, 8, 1, 16, 11, 1, 2, 6, 1, 19, 1, 12, 5, 11, 1, 7, 5, 1, 1, 1, 2, 5, 1, 4, 1, 3, 4, 4, 4, 1, 11, 1, 2, 5, 4, 12, 3, 1, 4, 1, 3, 1, 168, 1, 4, 1, 1
Offset: 0
Crossrefs
Cf. A065465 (decimal expansion).
Programs
-
Mathematica
digits = 93; $MaxExtraPrecision = 4 digits; terms = 4 digits; LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms + 10]]; r[n_Integer] := LR[[n]]; c = Exp[NSum[r[n] PrimeZetaP[n - 1]/(n - 1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]]; ContinuedFraction[c][[;; digits]] (* Jean-François Alcover, Aug 01 2019 *)
-
PARI
contfrac(prodeulerrat(1 - 1/(p^2*(p+1)))) \\ Amiram Eldar, Mar 14 2021
Extensions
Offset changed by Andrew Howroyd, Jul 05 2024