cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078128 Number of ways to write n as sum of cubes > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 2, 1, 0, 2, 0, 0, 1, 0, 2, 1, 0, 2, 0, 0, 1, 0, 2, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

a(A078129(n))=0; a(A078130(n))=1; a(A078131(n))>0;
Conjecture (lower bound): for all k exists b(k) such that a(n)>k for n>b(k); see b(0)=A078129(83)=154 and b(1)=A078130(63)=218.

Examples

			a(160)=4: 160 = 20*2^3 = 4^3+12*2^3 = 2*4^3+4*2^3 = 5^3+3^3+2^3.
		

Crossrefs

Programs

Formula

a(n) = 1/n*Sum_{k=1..n} (b(k)-1)*a(n-k), a(0) = 1, where b(k) is sum of cube divisors of k. - Vladeta Jovovic, Nov 20 2002
From Vaclav Kotesovec, Jan 05 2017: (Start)
a(n) = A003108(n) - A003108(n-1).
a(n) ~ exp(4*(Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3) * Zeta(4/3))^(3/2) / (8 * 3^(5/2) * Pi^2 * n^2).
(End)

A078133 Primes which cannot be written as sum of cubes>1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 61, 71, 73, 79, 101, 103, 109, 127
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

Sequence is finite, see A078129.

Crossrefs

A078138 Primes which can be written as sum of squares > 1.

Original entry on oeis.org

13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

By Sylvester's solution to the Frobenius problem, all integers greater than 4*9 - 4 - 9 = 23 can be represented as a sum of multiples of 4 and 9. Hence all primes except 2,3,5,7,11,19,23 are in this sequence. [Charles R Greathouse IV, Apr 19 2010]

Examples

			A000040(11) = 31 = 3^2 + 3^2 + 3^2 + 2^2, therefore 31 is a term.
		

Crossrefs

Programs

  • Mathematica
    Join[{13,17},Prime[Range[10,100]]] (* Harvey P. Dale, May 12 2014 *)
  • PARI
    a(n)=if(n<3,[13,17][n],prime(n+7))

Extensions

Comments, reference, and links by Charles R Greathouse IV, Apr 19 2010
Showing 1-3 of 3 results.