A078303 Generalized Fermat numbers: 6^(2^n) + 1, n >= 0.
7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097
Offset: 0
Examples
a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2; a(1) = 6^2+1 = 37 = 5*(7)+2; a(2) = 6^4+1 = 1297 = 5*(7*37)+2; a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2; a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2; a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2;
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
- C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=6).
- Wilfrid Keller, GFN06 factoring status.
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- OEIS Wiki, Generalized Fermat numbers.
Crossrefs
Programs
-
Magma
[6^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
-
Mathematica
Table[6^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
-
PARI
a(n)=6^(2^n)+1 \\ Charles R Greathouse IV, Jun 21 2011
Formula
a(0) = 7, a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = 5*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 5*(empty product, i.e., 1)+ 2 = 7 = a(0). This implies that the terms are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/5. - Amiram Eldar, Oct 03 2022
Extensions
Edited by Daniel Forgues, Jun 22 2011
Comments