A078304 Generalized Fermat numbers: 7^(2^n)+1, n >= 0.
8, 50, 2402, 5764802, 33232930569602, 1104427674243920646305299202, 1219760487635835700138573862562971820755615294131238402
Offset: 0
Examples
a(0) = 7^1+1 = 8 = 6*(1)+2 = 6*(empty product)+2. a(1) = 7^2+1 = 50 = 6*(8)+2. a(2) = 7^4+1 = 2402 = 6*(8*50)+2. a(3) = 7^8+1 = 5764802 = 6*(8*50*2402)+2. a(4) = 7^16+1 = 33232930569602 = 6*(8*50*2402*5764802)+2. a(5) = 7^32+1 = 1104427674243920646305299202 = 6*(8*50*2402*5764802*33232930569602)+2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- OEIS Wiki, Generalized Fermat numbers.
Crossrefs
Programs
-
Magma
[7^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
-
Mathematica
Table[7^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
Formula
a(0) = 8, a(n)=(a(n-1)-1)^2+1, n >= 1.
a(n) = 6*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 6*(empty product, i.e., 1)+ 2 = 8 = a(0). This means that the GCD of any pair of terms is 2. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/6. - Amiram Eldar, Oct 03 2022
Extensions
Edited by Daniel Forgues, Jun 19 2011
Comments