cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078306 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^2.

Original entry on oeis.org

1, 3, 10, 11, 26, 30, 50, 43, 91, 78, 122, 110, 170, 150, 260, 171, 290, 273, 362, 286, 500, 366, 530, 430, 651, 510, 820, 550, 842, 780, 962, 683, 1220, 870, 1300, 1001, 1370, 1086, 1700, 1118, 1682, 1500, 1850, 1342, 2366, 1590, 2210, 1710, 2451, 1953
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n/d+1)*d^2, {d, Divisors[n]}]; Array[a, 50] (* Jean-François Alcover, Apr 17 2014 *)
    Table[CoefficientList[Series[-Log[Product[1/(x^k + 1)^k, {k, 1, 90}]], {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^2); \\ Michel Marcus, Jul 06 2016
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**2 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{n >= 1} n^2*x^n/(1+x^n).
Multiplicative with a(2^e) = (2*4^e+1)/3, a(p^e) = (p^(2*e+2)-1)/(p^2-1), p > 2.
L.g.f.: -log(Product_{ k>0 } 1/(x^k+1)^k) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^n*(1 + x^n)/(1 - x^n)^3. - Peter Bala, Jan 14 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-2) * (1 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 4. (End)