cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078309 Numbers that are congruent to {1, 4, 7} mod 10.

Original entry on oeis.org

1, 4, 7, 11, 14, 17, 21, 24, 27, 31, 34, 37, 41, 44, 47, 51, 54, 57, 61, 64, 67, 71, 74, 77, 81, 84, 87, 91, 94, 97, 101, 104, 107, 111, 114, 117, 121, 124, 127, 131, 134, 137, 141, 144, 147, 151, 154, 157, 161, 164, 167, 171, 174, 177, 181, 184, 187, 191, 194, 197
Offset: 1

Views

Author

Jochen Ziegenbalg, Dec 23 2002

Keywords

Comments

The formula 1 + 3*mod(n-1, 3) + floor(2/7 + (n-1)/n) * 10^floor((n-1)/3) produces a sequence with the same first 6 terms.
Numbers with last digit 1, 4, or 7. - Wesley Ivan Hurt, Jun 14 2016

Crossrefs

The sequence begins with the same first 6 terms as the 'Straight' sequence (A028373).

Programs

  • Magma
    [3*n + Floor((n-1)/3) - 2: n in [1..60]]; // Vincenzo Librandi, Apr 23 2014
  • Maple
    A078309:=n->(30*n-24-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A078309(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Table[1 + 3*Mod[n - 1, 3] + 10*Floor[(n - 1)/3], {n, 55}]
    Select[Range[200], MemberQ[{1,4,7}, Mod[#,10]]&] (* or *) LinearRecurrence[ {1,0,1,-1}, {1,4,7,11}, 60] (* Harvey P. Dale, Apr 21 2014 *)
    CoefficientList[Series[(-1 - 3 x (1 + x + x^2))/(-1 + x + x^3 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 23 2014 *)
  • PARI
    a(n)=1+n--%3*3+n\3*10 \\ Charles R Greathouse IV, Sep 25 2012
    

Formula

a(n) = 1 + 3*mod(n-1, 3) + 10*floor((n-1)/3).
From Arkadiusz Wesolowski, Sep 21 2012: (Start)
a(n) = a(n-3) + 10 for n>4.
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 3*n + floor((n-1)/3) - 2.
G.f.: (-x - 3*(x^2 + x^3 + x^4))/(-1 + x + x^3 - x^4). (End)
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = (30*n-24-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 10k-3, a(3k-1) = 10k-6, a(3k-2) = 10k-9. (End)

Extensions

Edited by Robert G. Wilson v, Dec 24 2002