cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078392 Sum of GCD's of parts in all partitions of n.

Original entry on oeis.org

1, 3, 5, 9, 11, 20, 21, 35, 42, 61, 66, 112, 113, 168, 210, 279, 313, 461, 508, 719, 852, 1088, 1277, 1756, 2006, 2573, 3106, 3937, 4593, 5958, 6872, 8676, 10305, 12655, 15009, 18664, 21673, 26559, 31447, 38217, 44623, 54386, 63303, 76379, 89696, 106879
Offset: 1

Views

Author

Vladeta Jovovic, Dec 24 2002

Keywords

Comments

Equals row sums of triangle A168534. - Gary W. Adamson, Nov 28 2009

Examples

			Partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, 4, the corresponding GCD's of parts are 1,1,2,1,4 and their sum is a(4) = 9.
		

Crossrefs

Cf. A000010, A000041, A168534, A181844 (the same for LCM), A319301.

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> add(phi(n/d)*numbpart(d), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 02 2015
  • Mathematica
    a[n_] := Sum[EulerPhi[n/d]*PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)

Formula

a(n) = Sum_{d|n} d * A000837(n/d).
a(n) = Sum_{d|n} phi(n/d)*numbpart(d) = Sum_{d|n} A000010(n/d)*A000041(d). - Vladeta Jovovic, May 08 2003
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A000041(gcd(n,k)).
a(n) = Sum_{k=1..n} A000041(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)