cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078429 Number of integers k among 1..n for which gcd(k,n) is a cube.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 5, 6, 4, 10, 4, 12, 6, 8, 9, 16, 6, 18, 8, 12, 10, 22, 10, 20, 12, 19, 12, 28, 8, 30, 18, 20, 16, 24, 12, 36, 18, 24, 20, 40, 12, 42, 20, 24, 22, 46, 18, 42, 20, 32, 24, 52, 19, 40, 30, 36, 28, 58, 16, 60, 30, 36, 37, 48, 20, 66, 32, 44, 24, 70, 30, 72, 36, 40, 36
Offset: 1

Views

Author

Vladeta Jovovic, Dec 29 2002

Keywords

Crossrefs

Cf. A061020, A206369, A327626 (inv. Mob. Trans.).

Programs

  • Mathematica
    nn = 76; f[list_, i_] := list[[i]]; a = Table[If[IntegerQ[n^(1/3)], 1, 0], {n, 1, nn}]; b =Table[EulerPhi[n], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 25 2015 *)
  • PARI
    a(n) = sum(k=1, n, ispower(gcd(n, k), 3)); \\ Michel Marcus, Feb 25 2015
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d) * ispower(d, 3)); \\ Daniel Suteu, Jun 27 2018

Formula

a(n) is multiplicative.
G.f. for a(p^n), p a prime, is given by 1/(1+x+x^2)/(1-p*x).
a(2^n) = A077947(n), a(3^n) = A077834(n).
a(p) = p-1, a(p^2) = p*(p-1), a(p^3) = p^3-p^2+1, a(p^4) = (p-1)*(p+1)*(p^2-p+1), ...
Dirichlet g.f.: zeta(s - 1)*zeta(3*s)/zeta(s). - Geoffrey Critzer, Feb 25 2015
a(n) = Sum_{d|n, d is a perfect cube} phi(n/d), where phi(k) is the Euler totient function. Dirichlet convolution of A000010 and A010057. - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 315. - Vaclav Kotesovec, Feb 07 2019
Dirichlet convolution of A000027 and A210826. - R. J. Mathar, Jun 05 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} A010057(gcd(n,k)).
a(n) = Sum_{k=1..n} A010057(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)