cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078437 Decimal expansion of sum of alternating series of reciprocals of primes.

Original entry on oeis.org

2, 6, 9, 6, 0, 6, 3, 5, 1, 9, 7, 1, 6, 7
Offset: 0

Views

Author

G. L. Honaker, Jr., Dec 31 2002

Keywords

Comments

Verified and extended by Chris K. Caldwell and Jud McCranie.
Next two terms are most likely 4 and 5. - Robert Price, Sep 13 2011
From Jon E. Schoenfield, Nov 25 2018: (Start)
Let f(k) be the k-th partial sum of the alternating series, i.e., f(k) = Sum_{j=1..k} ((-1)^(j+1))/prime(j). At large values of k, successive first differences f(k) - f(k-1) = ((-1)^(k+1))/prime(k) are alternatingly positive and negative and are nearly the same in absolute value, so f(k) is alternatingly above (for odd k) or below (for even k) the value of the much smoother function g(k) = (f(k-1) + f(k))/2 (a two-point moving average of the function f()).
Additionally, since the first differences f(k) - f(k-1) are decreasing in absolute value, g(k) will be less than both g(k-1) and g(k+1) for odd k, and greater than both for even k; i.e., g(), although much smoother than f(), is also alternatingly below or above the value of the still smoother function h(k) = (g(k-1) + g(k))/2 = ((f(k-2) + f(k-1))/2 + (f(k-1) + f(k))/2)/2 = (f(k-2) + 2*f(k-1) + f(k))/4. Evaluated at k = 2^m for m = 1, 2, 3, ..., the values of h(k) converge fairly quickly toward the limit of the alternating series:
h(k) =
k (f(k-2) + 2*f(k-1) + f(k))/4
========== ============================
2 0.29166666666666666...
4 0.28095238095238095...
8 0.26875529011751921...
16 0.27058892362329746...
32 0.27009944617052797...
64 0.26963971020080367...
128 0.26959147218377685...
256 0.26959653902072193...
512 0.26960402179695026...
1024 0.26960568606633210...
2048 0.26960649673621509...
4096 0.26960645080540929...
8192 0.26960627432070023...
16384 0.26960633643086948...
32768 0.26960634835658329...
65536 0.26960635083481533...
131072 0.26960635144743392...
262144 0.26960635199009778...
524288 0.26960635199971603...
1048576 0.26960635195886861...
2097152 0.26960635197214933...
4194304 0.26960635197019215...
8388608 0.26960635197186919...
16777216 0.26960635197171149...
33554432 0.26960635197146884...
67108864 0.26960635197167534...
134217728 0.26960635197167145...
268435456 0.26960635197166927...
536870912 0.26960635197167200...
1073741824 0.26960635197167416...
2147483648 0.26960635197167454...
4294967296 0.26960635197167462... (End)
The above mentioned average functions can also be written g(k) = f(k) + (-1)^k/prime(k)/2 and h(k) = g(k) + (-1)^k (1/prime(k) - 1/prime(k-1))/4 = f(k) + (-1)^k (3/prime(k) - 1/prime(k-1))/4. - M. F. Hasler, Feb 20 2024

Examples

			1/2 - 1/3 + 1/5 - 1/7 + 1/11 - 1/13 + ... = 0.26960635197167...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98.

Crossrefs

Cf. A024530 (numerator of partial sums), A002110 (denominators: primorials).

Programs

  • Mathematica
    s = NSum[ p=Prime[k//Round]; (-1)^k/p, {k, 1, Infinity}, WorkingPrecision -> 30, NSumTerms -> 5*10^7, Method -> "AlternatingSigns"]; RealDigits[s, 10, 14] // First (* Jean-François Alcover, Sep 02 2015 *)
  • PARI
    L=2^N=1; h=List([1/4, 1/6 + S=.5-1/o=3]); forprime(p=o+1,oo, S+=(-1)^L/p; L--|| print([L=2^N++, p, S, listput(h, S+(3/p-1/o)/4)]); o=p) \\ in PARI version > 2.13 listput() may not return the element so one must add +h[#h]
    A(x,n=#x)=(x[n]*x[n-2]-x[n-1]^2)/(x[n]+x[n-2]-2*x[n-1]) \\ This is Aitken's Delta-square extrapolation for the last 3 elements of the list x. One can check that the extrapolation is useful for the sequence of raw partial sums (f(2^k)), but not for the smooth/average sequence (h(2^k)). - M. F. Hasler, Feb 20 2024

Formula

c = lim_{n -> oo} A024530(n)/A002110(n). - M. F. Hasler, Feb 20 2024

Extensions

Values of a(11)-a(14) = 7,1,6,7 from Robert Price, Sep 13 2011