A078437 Decimal expansion of sum of alternating series of reciprocals of primes.
2, 6, 9, 6, 0, 6, 3, 5, 1, 9, 7, 1, 6, 7
Offset: 0
Examples
1/2 - 1/3 + 1/5 - 1/7 + 1/11 - 1/13 + ... = 0.26960635197167...
References
- S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 94-98.
Links
- Eric Weisstein's World of Mathematics, Prime Sums
- Eric Weisstein's World of Mathematics, Prime Zeta Function
- Wikipedia, Prime Zeta Function
Crossrefs
Programs
-
Mathematica
s = NSum[ p=Prime[k//Round]; (-1)^k/p, {k, 1, Infinity}, WorkingPrecision -> 30, NSumTerms -> 5*10^7, Method -> "AlternatingSigns"]; RealDigits[s, 10, 14] // First (* Jean-François Alcover, Sep 02 2015 *)
-
PARI
L=2^N=1; h=List([1/4, 1/6 + S=.5-1/o=3]); forprime(p=o+1,oo, S+=(-1)^L/p; L--|| print([L=2^N++, p, S, listput(h, S+(3/p-1/o)/4)]); o=p) \\ in PARI version > 2.13 listput() may not return the element so one must add +h[#h] A(x,n=#x)=(x[n]*x[n-2]-x[n-1]^2)/(x[n]+x[n-2]-2*x[n-1]) \\ This is Aitken's Delta-square extrapolation for the last 3 elements of the list x. One can check that the extrapolation is useful for the sequence of raw partial sums (f(2^k)), but not for the smooth/average sequence (h(2^k)). - M. F. Hasler, Feb 20 2024
Formula
Extensions
Values of a(11)-a(14) = 7,1,6,7 from Robert Price, Sep 13 2011
Comments