cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298473 a(n) = n * lambda(n) * 2^omega(n).

Original entry on oeis.org

1, -4, -6, 8, -10, 24, -14, -16, 18, 40, -22, -48, -26, 56, 60, 32, -34, -72, -38, -80, 84, 88, -46, 96, 50, 104, -54, -112, -58, -240, -62, -64, 132, 136, 140, 144, -74, 152, 156, 160, -82, -336, -86, -176, -180, 184, -94, -192, 98, -200, 204, -208, -106, 216, 220, 224, 228, 232, -118, 480
Offset: 1

Views

Author

Werner Schulte, Jan 19 2018

Keywords

Comments

The sequence b(n) = abs(a(n)) = n * 2^omega(n) for n>=1 is multiplicative with b(p^e) = 2*p^e (p prime, e > 0) and is the Dirichlet inverse of a(n). The Dirichlet g.f. of b(n) is: (zeta(s-1))^2/zeta(2*s-2). For omega(n) and lambda(n) see A001221 and A008836, respectively.

Examples

			a(6) = a(2)*a(3) = (-4)*(-6) = 24 = 6*1*2^2;
a(8) = a(2^3) = 2*(-2)^3 = -16 = 8*(-1)*2^1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
    mul(2*(-t[1])^t[2],t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 06 2022
  • Mathematica
    Array[# (-1)^PrimeOmega[#]*2^PrimeNu[#] &, 60] (* Michael De Vlieger, Jan 20 2018 *)
  • PARI
    a(n) = n*(-1)^bigomega(n)*2^omega(n); \\ Michel Marcus, Jan 20 2018

Formula

Multiplicative with a(p^e) = 2*(-p)^e (p prime, e>0).
Dirichlet inverse of abs(a(n)).
Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1))^2.
Sum_{d|n} A000290(d)*a(n/d) = n*A060648(n).
Sum_{d|n} A078439(d)*a(n/d) = A008683(n).
O.g.f. for the unsigned sequence: Sum_{n >= 1} |a(n)|*x^n = Sum_{n >= 1} |mu(n)|*n*x^n/(1 - x^n)^2, where mu(n) = A008683(n) is the Möbius function. - Peter Bala, Mar 05 2022
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2 * (log(n) - 1/2 + 2*gamma - 12*zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 16 2025

A347104 Dirichlet g.f.: primezeta(s-1) * zeta(s-1) / zeta(s).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 7, 4, 6, 13, 11, 10, 13, 19, 22, 8, 17, 18, 19, 18, 32, 31, 23, 20, 20, 37, 18, 26, 29, 38, 31, 16, 52, 49, 58, 24, 37, 55, 62, 36, 41, 56, 43, 42, 54, 67, 47, 40, 42, 60, 82, 50, 53, 54, 94, 52, 92, 85, 59, 60, 61, 91, 78, 32, 112, 92, 67, 66, 112, 106, 71, 48, 73, 109, 100
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 18 2021

Keywords

Comments

a(n) is the sum of the prime terms in row n of A050873.
Moebius transform of A328260.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] # PrimeNu[#] &], {n, 1, 75}]
    Table[DivisorSum[n, # EulerPhi[n/#] &, PrimeQ[#] &], {n, 1, 75}]
    Table[Sum[Boole[PrimeQ[GCD[n, k]]] GCD[n, k], {k, 1, n}], {n, 1, 75}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*omega(d)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * d * omega(d).
a(n) = Sum_{p|n, p prime} p * phi(n/p).
a(n) = Sum_{k=1..n} A010051(gcd(n,k)) * gcd(n,k).
Showing 1-2 of 2 results.