cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078481 Expansion of (1 - x - x^2 - sqrt(1 - 2*x - 5*x^2 - 2*x^3 + x^4)) / (2*x + 2*x^2).

Original entry on oeis.org

0, 1, 1, 3, 7, 19, 53, 153, 453, 1367, 4191, 13015, 40857, 129441, 413337, 1328971, 4298727, 13978971, 45673981, 149867513, 493638797, 1631616239, 5410015615, 17990076527, 59981630321, 200476419713, 671564145137, 2254338511507, 7582179238151, 25547868961315
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2003

Keywords

Comments

Number of irreducible stack sortable permutations of degree n.
Also number of Dyck paths of semilength n with no UDUD. Example: a(3)=3 because the only Dyck paths of semilength 3 with no UDUD in them are: UDUUDD, UUDDUD and UUUDDD (the nonqualifying ones being UUDUDD and UDUDUD). - Emeric Deutsch, Jan 27 2003
From Paul Barry, Jan 29 2009: (Start)
The sequence 1,1,1,3,7,19,... has general term sum{k=0..n, C(n+k,2k)*(-1)^(n-k)*A006318(k)} and g.f. given by
1/(1+x-2x/(1+x-x/(1+x-2x/(1+x-x/(1+x-2x/(1+x-x/(1-..... (continued fraction). (End)

Examples

			x + x^2 + 3*x^3 + 7*x^4 + 19*x^5 + 53*x^6 + 153*x^7 + 453*x^8 + 1367*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x - x^2 - (1 - 2*x - 5*x^2 - 2*x^3 + x^4)^(1/2)) / (2*x + 2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 27 2015 *)
    CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 2 x - 5 x^2 - 2 x^3 + x^4]) / (2 x + 2 x^2), {x, 0, 33}], x] (* Vincenzo Librandi, May 27 2016 *)
  • Maxima
    a(n):=if n=0 then 0 else sum(((sum(binomial(k+1,n-k-i)*binomial(k+i,k),i,0,n-k))*binomial(n-k-2,k))/(k+1),k,0,n); /* Vladimir Kruchinin, Nov 22 2014 */
  • PARI
    {a(n) = if( n<1, 0, polcoeff( -1 + 2*(1 + x) / (1 + x + x^2 + sqrt((1 - x + x^2)^2 - 8*x^2 + x*O(x^n))), n))} /* Michael Somos, Sep 08 2005 */
    

Formula

G.f.: (1 - x - x^2 - (1 - 2*x - 5*x^2 - 2*x^3 + x^4)^(1/2)) / (2*x + 2*x^2) = -1 + 2*(1 + x) / (1 + x + x^2 + sqrt((1 - x + x^2)^2 - 8*x^2)).
G.f. A(x) satisfies A(x) = x + (x + x^2) * (A(x) + A(x)^2). - Michael Somos, Sep 08 2005
Given g.f. A(x), then series reversion of B(x) = x + x*A(x) is -B(-x). - Michael Somos, Sep 08 2005
Given g.f. A(x), then B(x) = x + x*A(x) satisfies 0 = f(x, B(x)) where f(u, v) = u^2*(v + v^2) + u*(1 + v + v^2) - v. - Michael Somos, Sep 08 2005
Given g.f. A(x), then B(x) = x + x*A(x) satisfies B(x) = x + C(x*B(x)) where C(x) is g.f. of A006318 with offset 1. - Michael Somos, Sep 08 2005
D-finite with recurrence: (n+1)*a(n) +(-n+2)*a(n-1) +(-7*n+11)*a(n-2) +(-7*n+17)*a(n-3) +(-n+2)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Nov 26 2012
a(n) = sum(k=0..n, ((sum(i=0..n-k, binomial(k+1,n-k-i)*binomial(k+i,k)))*binomial(n-k-2,k))/(k+1)), n>0, a(0)=0. - Vladimir Kruchinin, Nov 22 2014.
a(n) ~ sqrt(2 - 1/sqrt(2) + sqrt(7*(4*sqrt(2)-5)/2)) * ((1 + 2*sqrt(2) + sqrt(5 + 4*sqrt(2)))/2)^n / (2 * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Jan 27 2015

Extensions

Replaced definition with g.f. given by Atkinson and Still (2002). - N. J. A. Sloane, May 24 2016