cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078149 See A078606 for the official version of this sequence.

Original entry on oeis.org

-2, -9, -5, 2, 7, 3, -3
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A078606.

A103876 a(n) = -1/10 (mod prime(n)): A test for divisibility by the n-th prime.

Original entry on oeis.org

2, 1, 9, 5, 17, 16, 26, 3, 11, 4, 30, 14, 37, 53, 6, 20, 7, 51, 71, 58, 80, 29, 10, 72, 32, 98, 79, 38, 13, 41, 125, 134, 15, 47, 114, 50, 121, 161, 18, 19, 135, 59, 179, 21, 156, 68, 206, 163, 215, 24, 25, 77, 184, 242, 27, 83, 28, 198, 205, 92, 31, 219, 95, 33, 101, 104
Offset: 4

Views

Author

Alfred S. Posamentier (asp2(AT)juno.com) and Robert G. Wilson v, Feb 10 2005

Keywords

Comments

Given a number M, remove its last digit d, then subtract d*a(n). If the result is divisible by prime(n), then M is also divisible by prime(n). This process may be repeated.
Values of a(n) can be quickly calculated by finding the smallest multiple of prime(n) which ends in a 1, and removing this last digit. E.g., 7 -> 21 -> 2, 11 -> 11 -> 1, 13 -> 91 -> 9, 17 -> 51 -> 5, 19 -> 171 -> 17.
a(n) is the canonical representative, in the interval (0, p), of the inverse of -10, modulo p = prime(n). - M. F. Hasler, Feb 03 2025

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 76-81.

Crossrefs

Programs

  • Maple
    a:= n-> -1/10 mod ithprime(n):
    seq(a(n), n=4..69);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    a[n_] := Block[{p = Prime[n], k = 1}, While[ Mod[10k + 1, p] != 0, k++ ]; k]; Table[ a[n], {n, 4, 69}]
    PowerMod[-10, -1, Prime[Range[4, 100]]] (* Paolo Xausa, Feb 06 2025 *)
  • PARI
    vector(66,n, my(p=prime(n+3)); p-lift(Mod(10,p)^-1)) \\ Joerg Arndt, Jan 23 2023
    
  • PARI
    a(n)=lift(-1/Mod(10,prime(n)));
    apply(a, [4..66]) \\ M. F. Hasler, Feb 03 2025
  • Python
    import sympy
    [pow(-10, -1, p) for p in sympy.primerange(7,300)]
    # Nicholas Stefan Georgescu, Jan 17 2023
    

Formula

a(n) = p - (10 mod p)^(-1) where p = prime(n). - Joerg Arndt, Jan 23 2023

Extensions

Definition edited by M. F. Hasler, Feb 03 2025

A357913 Inverse of 10 modulo prime(n).

Original entry on oeis.org

5, 10, 4, 12, 2, 7, 3, 28, 26, 37, 13, 33, 16, 6, 55, 47, 64, 22, 8, 25, 9, 68, 91, 31, 75, 11, 34, 89, 118, 96, 14, 15, 136, 110, 49, 117, 52, 18, 163, 172, 58, 138, 20, 190, 67, 159, 23, 70, 24, 217, 226, 180, 79, 27, 244, 194, 253, 85, 88, 215, 280, 94, 222, 298, 236, 243
Offset: 4

Views

Author

Keywords

Comments

Original definition: "Another test for divisibility by the n-th prime (see Comments for precise definition)."
Given a number M, delete its last digit d, then add d*a(n). If the result is divisible by prime(n), then M is also divisible by prime(n). This process may be repeated.
a(n) can be quickly calculated by finding the smallest multiple of prime(n) ending in 9, adding one, and dividing that result by 10. E.g., 7 -> 49 -> 5, 11 -> 99 -> 10, 13 -> 39 -> 4, 17 -> 119 -> 12, 19 -> 19 -> 2.
Equivalent definition: a(n) = 10^(p - 2) mod p, where p = prime(n). - Mauro Fiorentini, Feb 06 2025

Crossrefs

Programs

  • Mathematica
    PowerMod[10, -1, Prime[Range[4, 100]]] (* Paolo Xausa, Feb 07 2025 *)
  • PARI
    apply( {A357913(n)=lift(1/Mod(10,prime(n)))}, [4..49]) \\ M. F. Hasler, Feb 03 2025
  • Python
    import sympy
    [pow(10, -1, p) for p in sympy.primerange(7,348)]
    

Formula

a(n) = prime(n) - A103876(n).
a(n) = (A114013(n) + 1)/10. - Hugo Pfoertner, Jan 28 2023

Extensions

Better definition from M. F. Hasler, Feb 03 2025
Showing 1-3 of 3 results.