cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A112344 Number of partitions of n into perfect powers with each part > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 4, 2, 1, 0, 4, 2, 1, 0, 6, 5, 2, 2, 6, 5, 2, 2, 10, 8, 5, 4, 13, 8, 5, 4, 17, 14, 8, 9, 20, 17, 8, 9, 26, 24, 15, 14, 34, 27, 19, 14, 40, 38, 27, 25, 48, 47, 31, 30, 58, 59, 44, 42, 75, 68, 55, 47, 91, 86, 70, 67, 110, 106, 81, 81, 130, 134, 104
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 05 2005

Keywords

Examples

			a(20) = #{16+4, 8+8+4, 8+4+4+4, 4+4+4+4+4} = 4.
		

Crossrefs

Cf. A078635 (allowing 1).

Programs

  • Maple
    N:= 200: # to get a(1) to a(N)
    Pows:= {seq(seq(k^p, p=2..floor(log[k](N))),k=2..floor(sqrt(N)))}:
    g:= proc(n,q) option remember; if n = 0 then 1 else `+`(seq(procname(n-r,r), r=select(`<=`,Pows,min(q,n)))) fi end proc:
    seq(g(n,n), n=1..N); # Robert Israel, Nov 04 2015
  • Mathematica
    M = 200; (* to get a(1) to a(M) *)
    Pows = Table[k^p, {k, 2, Floor[Sqrt[M]]}, {p, 2, Floor[Log[k, M]]}] // Flatten // Union;
    g[n_, q_] := g[n, q] = If[n == 0, 1, Plus @@ Table[g[n - r, r], {r, Select[Pows, # <= Min[q, n]&]}]];
    Table[g[n, n], {n, 1, M}] (* Jean-François Alcover, Feb 03 2018, translated from Robert Israel's Maple code *)
  • PARI
    leastp(n) = {while(!ispower(n), n--; if (n==0, return (0))); n;}
    a(n) = {pmax = leastp(n); if (! pmax, return (0)); nb = 0; forpart(p=n, nb += (#select(x->ispower(x), Vec(p)) == #p), [4, pmax]); nb;} \\ Michel Marcus, Nov 04 2015

Extensions

Name clarified by Sean A. Irvine, Jan 12 2025

A131799 Number of partitions of n into parts that are squares or cubes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 5, 5, 7, 8, 8, 8, 12, 14, 15, 15, 19, 21, 22, 22, 28, 33, 35, 37, 43, 48, 50, 52, 61, 69, 74, 78, 90, 98, 103, 107, 122, 135, 143, 152, 170, 186, 194, 203, 225, 247, 261, 275, 305, 330, 348, 362, 396, 429, 454, 477, 519, 561, 590, 618, 666, 717
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 16 2007

Keywords

Comments

a(n) = A078635(n) for n < 32 = 2^5.

Examples

			a(10) = #{9+1, 8+1+1, 4+4+1+1, 4+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1} = 5.
		

Crossrefs

Programs

  • Mathematica
    nmax = 65; c2max = nmax^(1/2); c3max = nmax^(1/3);
    s = Flatten[{Table[n^2, {n, 1, c2max}]}~Join~{Table[n^3, {n, 1, c3max}]}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)

Formula

G.f.: Product_{k>=1} (1 - x^(k^6)) / ((1 - x^(k^2)) * (1 - x^(k^3))). - Vaclav Kotesovec, Jan 12 2017

Extensions

a(0)=1 prepended by Ilya Gutkovskiy, Jan 11 2017

A284171 Number of partitions of n into distinct perfect powers (including 1).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 2, 3, 2, 1, 2, 3, 3, 2, 4, 5, 3, 2, 4, 5, 3, 2, 4, 6, 4, 2, 4, 7, 5, 2, 5, 8, 5, 2, 5, 8, 6, 3, 5, 10, 8, 4, 6, 10, 8, 4, 6, 10, 9, 5, 7, 11, 10, 6, 8, 12, 10, 6, 8, 13, 11, 7, 9, 15, 13, 7, 10, 16, 14, 8, 10, 16, 15, 9, 10, 17, 16, 9, 11
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2017

Keywords

Comments

Differs from the sequence A112345 which does not consider 1 as a perfect power.

Examples

			a(25) = 3 because we have [25], [16, 9] and [16, 8, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[(1 + x) Product[(1 + Boole[GCD @@ FactorInteger[k][[All, 2]] > 1] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    Vec((1 + x) * prod(k=1, 100, 1 + (gcd(factorint(k)[,2])>1)*x^k) + O(x^101)) \\ Indranil Ghosh, Mar 21 2017

Formula

G.f.: Product_{k>=1} (1 + x^A001597(k)).
a(n) = A112345(n-1) + A112345(n).

A282499 Expansion of (Sum_{k = i^j, i>=1, j>=2, excluding duplicates} x^k)^3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 0, 0, 3, 3, 3, 1, 6, 6, 0, 3, 6, 9, 3, 3, 12, 3, 0, 4, 9, 9, 4, 6, 9, 6, 0, 9, 12, 12, 9, 9, 18, 9, 6, 12, 18, 18, 6, 21, 21, 6, 6, 10, 24, 9, 12, 15, 18, 12, 3, 18, 12, 18, 12, 18, 24, 15, 9, 9, 18, 24, 15, 18, 24, 9, 6, 18, 24, 12, 13, 15, 27, 6, 9, 15, 19, 18, 9, 24, 12, 18, 0, 15, 24, 27, 9, 12, 24, 12, 12
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 3 perfect powers (A001597).

Examples

			a(14) = 6 because we have  [9, 4, 1], [9, 1, 4], [4, 9, 1], [4, 1, 9], [1, 9, 4] and [1, 4, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 95; CoefficientList[Series[(x + Sum[Boole[GCD @@ FactorInteger[k][[All, 2]] > 1] x^k, {k, 2, nmax}])^3, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k = i^j, i>=1, j>=2, excluding duplicates} x^k)^3.

A282500 Expansion of 1/(1 - Sum_{k = i^j, i>=1, j>=2} x^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 19, 26, 37, 55, 81, 116, 167, 244, 358, 520, 752, 1091, 1589, 2311, 3354, 4870, 7081, 10298, 14963, 21734, 31580, 45900, 66704, 96919, 140827, 204654, 297413, 432180, 627996, 912565, 1326117, 1927054, 2800260, 4069160, 5913116, 8592675, 12486402, 18144506, 26366614
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of compositions (ordered partitions) into perfect powers (A001597).

Examples

			a(7) = 5 because we have  [4, 1, 1, 1], [1, 4, 1, 1], [1, 1, 4, 1], [1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 95; CoefficientList[Series[1/ (1 - x - Sum[Boole[GCD @@ FactorInteger[k][[All, 2]] > 1] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k = i^j, i>=1, j>=2} x^k).
a(n) ~ c / r^n, where r = 0.68816189979082638501485812136220175833447947220530020978433949588627... and c = 0.4267808681995359684192168334905096310027880655306734537865362460298... . - Vaclav Kotesovec, Feb 17 2017

A286305 Number of partitions of n into powerful parts (A001694).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 5, 5, 7, 8, 8, 8, 12, 14, 15, 15, 19, 21, 22, 22, 28, 33, 35, 37, 43, 48, 50, 52, 62, 70, 75, 79, 92, 100, 105, 109, 126, 140, 148, 157, 177, 194, 202, 211, 237, 261, 276, 290, 324, 351, 370, 384, 424, 462, 489, 514, 562, 609, 640, 670, 728, 787, 831, 873, 948, 1016, 1071, 1118, 1210, 1296, 1366, 1433
Offset: 0

Views

Author

Ilya Gutkovskiy, May 12 2017

Keywords

Examples

			a(8) = 4 because we have [8], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[1/(1 - x) Product[1/(1 - Boole[Min@ FactorInteger[k][[All, 2]] > 1] x^k), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A001694(k)).
a(n) = A078635(n) for n < 72.

A331923 Number of compositions (ordered partitions) of n into distinct perfect powers.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 2, 0, 2, 8, 6, 0, 1, 4, 6, 0, 2, 12, 24, 0, 2, 9, 8, 1, 8, 32, 30, 2, 7, 10, 32, 8, 11, 44, 150, 30, 34, 40, 18, 26, 20, 68, 78, 126, 56, 169, 80, 30, 40, 116, 294, 144, 162, 226, 182, 128, 66, 338, 348, 752, 199, 1048
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2020

Keywords

Examples

			a(17) = 4 because we have [16, 1], [9, 8], [8, 9] and [1, 16].
		

Crossrefs

Programs

  • Maple
    N:= 200: # for a(0)..a(N)
    PP:= {1,seq(seq(b^i,i=2..floor(log[b](N))),b=2..floor(sqrt(N)))}:
    G:= mul(1+t*x^p, p=PP):
    F:= proc(n) local R, k, v;
      R:= normal(coeff(G, x, n));
      add(k!*coeff(R, t, k), k=1..degree(R, t))
    end proc:
    F(0):= 1:
    map(F, [$0..N]); # Robert Israel, Feb 03 2020
  • Mathematica
    M = 200;
    PP = Join[{1}, Table[Table[b^i, {i, 2, Floor[Log[b, M]]}], {b, 2, Floor[ Sqrt[M]]}] // Flatten // Union];
    G = Product[1 + t x^p, {p, PP}];
    a[n_] := Module[{R, k, v}, R = SeriesCoefficient[G, {x, 0, n}]; Sum[k! SeriesCoefficient[R, {t, 0, k}], {k, 1, Exponent[R, t]}]];
    a[0] = 1;
    a /@ Range[0, M] (* Jean-François Alcover, Oct 25 2020, after Robert Israel *)
Showing 1-7 of 7 results.