cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078708 Sum of divisors d of n such that n/d is not congruent to 0 mod 3.

Original entry on oeis.org

1, 3, 3, 7, 6, 9, 8, 15, 9, 18, 12, 21, 14, 24, 18, 31, 18, 27, 20, 42, 24, 36, 24, 45, 31, 42, 27, 56, 30, 54, 32, 63, 36, 54, 48, 63, 38, 60, 42, 90, 42, 72, 44, 84, 54, 72, 48, 93, 57, 93, 54, 98, 54, 81, 72, 120, 60, 90, 60, 126, 62, 96, 72, 127, 84, 108, 68, 126, 72, 144
Offset: 1

Views

Author

Vladeta Jovovic, Dec 18 2002

Keywords

Crossrefs

Cf. A002131 (k=2), this sequence (k=3), A285895 (k=4), A285896 (k=5).

Programs

  • Mathematica
    f[p_, e_] := If[p == 3, 3^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
  • PARI
    for(n=1,70,d=divisors(n); s=0; for(j=1,matsize(d)[2],if((n/d[j])%3>0,s=s+d[j])); print1(s,","))
    
  • PARI
    a(n)=sumdiv(n,d,if((n/d)%3,1,0)*d)

Formula

G.f.: Sum_{k>0} x^k*(1+x^k)^2*(1+x^(2*k))/(1-x^(3*k))^2.
a(n) = (A000203(3*n)-A000203(n))/3. - Vladeta Jovovic, Dec 22 2003
G.f.: Sum_{k>=1} k*x^k*(1 + x^k)/(1 - x^(3*k)). - Ilya Gutkovskiy, Sep 13 2019
From R. J. Mathar, May 25 2020: (Start)
a(n) = A326399(n) + A326400(n).
a(n) = A000203(n) - A000203(n/3), where A000203(.) = 0 for non-integer arguments. (End)
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(3^e) = 3^e and a(p^e) = (p^(e+1)-1)/(p-1) if p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/27 = 0.731081... (A346933). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^s). - Amiram Eldar, Dec 30 2022

Extensions

Extended by Klaus Brockhaus and Benoit Cloitre, Dec 20 2002