A079156
Sum of end-to-end Manhattan distances over all self-avoiding n-step walks on cubic lattice. Numerator of mean Manhattan displacement s(n)=a(n)/A078717.
Original entry on oeis.org
10, 67, 396, 2201, 11870, 62571, 324896, 1665349, 8457890, 42605267, 213305636, 1061939193, 5263752278, 25984214383, 127848694424, 627084275649, 3067923454498
Offset: 2
a(2)=10 because the A078717(2)=5 different self-avoiding 2-step walks end at (1,0,-1),(1,0,1),(1,-1,0),(1,1,0),(2,0,0)->d=2. a(2)=5*2=10. See also "Distribution of end point distance" at Pfoertner link
A001412
Number of n-step self-avoiding walks on cubic lattice.
Original entry on oeis.org
1, 6, 30, 150, 726, 3534, 16926, 81390, 387966, 1853886, 8809878, 41934150, 198842742, 943974510, 4468911678, 21175146054, 100121875974, 473730252102, 2237723684094, 10576033219614, 49917327838734, 235710090502158, 1111781983442406, 5245988215191414, 24730180885580790, 116618841700433358, 549493796867100942, 2589874864863200574, 12198184788179866902, 57466913094951837030, 270569905525454674614
Offset: 0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 5.10, pp. 331-339.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. D. Schram, G. T. Barkema, and R. H. Bisseling, Table of n, a(n) for n = 0..36
- N. Clisby, Enumerative combinatorics of lattice polymers, Notices AMS, 68:4 (2021), 504-515. (Excellent survey)
- N. Clisby, R. Liang, and G. Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. 40 (2007), 10973-11017, Table A5 for n<=30.
- Steven R. Finch, Self-Avoiding-Walk Connective Constants
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- A. J. Guttmann, On the critical behavior of self-avoiding walks, J. Phys. A 20 (1987), 1839-1854.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.
- A. M. Nemirovsky, Karl F. Freed, Takao Ishinabe, and Jack F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- D. Randall, Counting in Lattices: Combinatorial Problems from Statistical Mechanics, PhD Thesis (1994).
- Raoul D. Schram, Gerard T. Barkema, and Rob H. Bisseling, Exact enumeration of self-avoiding walks, arXiv:1104.2184 [math-ph], 2011.
- Nobu C. Shirai and Naoyuki Sakumichi, Negative Energetic Elasticity of Lattice Polymer Chain in Solvent, arXiv:2202.12483 [cond-mat.soft], 2022.
- M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.
- M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.
- M. F. Sykes, A. J. Guttmann, M. G. Watts, and P. D. Roberts, The asymptotic behavior of self-avoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
- M. F. Sykes, D. S. McKenzie, M. G. Watts, and J. L. Martin, The number of self-avoiding rings on a lattice, J. Phys. A 5 (1972), 661-666.
-
mo = {{1, 0, 0}, {-1, 0, 0}, {0, 1, 0}, {0, -1, 0}, {0, 0, 1}, {0, 0, -1}}; a[0] = 1;
a[tg_, p_: {{0, 0, 0}}] := Block[{e, mv = Complement[Last[p] + # & /@ mo, p]},
If[tg == 1, Return[Length@mv],Sum[a[tg - 1, Append[p, e]], {e, mv}]]];
a /@ Range[0, 8]
(* Robert FERREOL, Nov 30 2018, after the program of Giovanni Resta in A001411 *)
-
def add(L,x):
M=[y for y in L];M.append(x)
return(M)
plus=lambda L,M : [x+y for x,y in zip(L,M)]
mo=[[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]]
def a(n,P=[[0,0,0]]):
if n==0: return(1)
mv1 = [plus(P[-1],x) for x in mo]
mv2=[x for x in mv1 if x not in P]
if n==1: return(len(mv2))
else: return(sum(a(n-1,add(P,x)) for x in mv2))
[a(n) for n in range(8)]
# Robert FERREOL, Nov 30 2018
A002902
Number of n-step self-avoiding walks on a cubic lattice with a first step along the positive x, y, or z axis.
Original entry on oeis.org
3, 15, 75, 363, 1767, 8463, 40695, 193983, 926943, 4404939, 20967075, 99421371, 471987255, 2234455839, 10587573027, 50060937987, 236865126051, 1118861842047, 5288016609807, 24958663919367, 117855045251079, 555890991721203, 2622994107595707
Offset: 1
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. S. McKenzie and C. Domb, The second osmotic virial coefficient of athermal polymer solutions, Proceedings of the Physical Society, 92 (1967) 632-649.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- M. F. Sykes, Self-avoiding walks on the simple cubic lattice, J. Chem. Phys., 39 (1963), 410-411.
- M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
A078605
Sum of square displacements over all self-avoiding n-step walks on the cubic lattice with the first step specified. Numerator of mean square displacement s(n)=a(n)/(A001412(n)/6).
Original entry on oeis.org
1, 12, 97, 672, 4261, 25588, 147821, 830576, 4566917, 24692980, 131682825, 694386864, 3626770709, 18790632772, 96675376705, 494382431552, 2514666026897, 12730690730212, 64177763220925, 322314275563424, 1613192327878789, 8049191357609204, 40048773875769449, 198750753713937600
Offset: 1
a(2)=12 because the A001412(2)/6 = 5 different self-avoiding 2-step walks end at (1,0,-1), (1,0,1), (1,-1,0), (1,1,0)->d^2=2 and at (2,0,0)->d^2=4. a(2) = 4*2 + 1*4 = 12. See also "Distribution of end point distance" at first link.
A140476
Number of self-avoiding walks on cubic lattice with no more than n steps.
Original entry on oeis.org
1, 7, 37, 187, 913, 4447, 21373, 102763, 490729, 2344615, 11154493, 53088643, 251931385, 1195905895, 5664817573, 26839963627, 126961839601, 600692091703, 2838415775797, 13414448995411, 63331776834145, 299041867336303
Offset: 0
a(9) = 1 + 6 + 30 + 150 + 726 + 3534 + 16926 + 81390 + 387966 + 1853886 = 2344615.
Showing 1-5 of 5 results.
Comments