cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A251758 Let n>=2 be a positive integer with divisors 1 = d_1 < d_2 < ... < d_k = n, and s = d_1*d_2 + d_2*d_3 + ... + d_(k-1)*d_k. The sequence lists the values a(n) = floor(n^2/s).

Original entry on oeis.org

2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 13, 1, 2, 1, 17, 1, 19, 1, 2, 1, 23, 1, 4, 1, 2, 1, 29, 1, 31, 1, 2, 1, 4, 1, 37, 1, 2, 1, 41, 1, 43, 1, 2, 1, 47, 1, 6, 1, 2, 1, 53, 1, 4, 1, 2, 1, 59, 1, 61, 1, 2, 1, 4, 1, 67, 1, 2, 1, 71, 1, 73, 1, 2, 1, 6, 1, 79, 1, 2, 1
Offset: 2

Views

Author

Michel Lagneau, Dec 08 2014

Keywords

Comments

s is always less than n^2 and if n is a prime number then s divides n^2.
For n >= 2, the sequence has the following properties:
a(n) = n if n is prime.
a(n) = 1 if n is in A005843 and > 2;
a(n) <= 2 if n is in A016945 and > 3;
a(n) <= 4 if n is in A084967 and > 5;
a(n) <= 6 if n is in A084968 and > 7;
a(n) = 8: <= 35336848261, ...;
a(n) <= 10 if n is in A084969 and > 11;
a(n) <= 12 if n is in A084970 and > 13;
a(n) = 14: 6678671, ...;
This is different from A250480 (a(n) = n for all prime n, and a(n) = A020639(n) - 1 for all composite n), which thus satisfies the above conditions exactly, while with this sequence A020639(n)-1 gives only the guaranteed upper limit for a(n) at composite n. Note that the first different term does not occur until at n = 2431 = 11*13*17, for which a(n) = 9. (See the example below.)
Conjecture: Terms x, where a(x)=n, x=p#k/p#j, p#i is the i-th primorial, k>j is suitable large k and j is the number of primes less than n. As an example, n=9, x = p#7/p#4 = 2431. For n=10, x = p#6/p#4 = 143 although 121 = 11^2 is the least x where a(x)=10 (see formula section). For n=8, x = p#12/p#4, p#13/p#4, p#14/p#4, p#15/p#4, p#16/p#4, etc. But is p#12/p#4 the least such x? - Robert G. Wilson v, Dec 18 2014
n^2/s is only an integer iff n is prime. - Robert G. Wilson v, Dec 18 2014
First occurrence of n >= 1: 4, 2, 3, 25, 5, 49, 7, ??? <= 35336848261, 2431, 121, 11, 169, 13, 6678671, 7429, 289, 17, 361, 19, 31367009, 20677, 529, 23, ..., . - Robert G. Wilson v, Dec 18 2014

Examples

			For n = 2431 = 11*13*17, we have (as the eight divisors of 2431 are [1, 11, 13, 17, 143, 187, 221, 2431]) a(n) = floor((2431*2431) / ((1*11)+(11*13)+(13*17)+(17*143)+(143*187)+(187*221)+(221*2431))) = floor(5909761/608125) = floor(9.718) = 9.
		

Crossrefs

Cf. A000040 (prime numbers), A005843 (even numbers), A016945 (6n+3), A084967 (GCD( 5k, 6) =1), A084968 (GCD( 7k, 30) =1), A084969 (GCD( 11k, 30) =1), A084970 (Numbers whose smallest prime factor is 13).
Cf. also A020639 (the smallest prime divisor), A055396 (its index) and arrays A083140 and A083221 (Sieve of Eratosthenes).
Differs from A250480 for the first time at n = 2431, where a(2431) = 9, while A250480(2431) = 10.
Cf. A078730 (sum of products of two successive divisors of n).

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 2 to nn do:
       x:=divisors(n):n0:=nops(x):s:=sum('x[i]*x[i+1]','i'=1..n0-1):
       z:=floor(n^2/s):printf(`%d, `,z):
    od:
  • Mathematica
    f[n_] := Floor[ n^2/Plus @@ Times @@@ Partition[ Divisors@ n, 2, 1]]; Array[f, 81, 2] (* Robert G. Wilson v, Dec 18 2014 *)

Formula

a(n) <= A250480(n), and especially, for all composite n, a(n) < A020639(n). [Cf. the Comments section above.] - Antti Karttunen, Dec 09 2014
From Robert G. Wilson v, Dec 18 2014: (Start)
a(n) = floor(n^2/A078730(n));
a(n) = n iff n is prime. (End)

Extensions

Comments section edited by Antti Karttunen, Dec 09 2014
Instances of n for which a(n) = 8 and 14 found by Robert G. Wilson v, Dec 18 2014

A136193 Irregular array read by rows: row n contains the products of each pair of consecutive positive divisors of n.

Original entry on oeis.org

2, 3, 2, 8, 5, 2, 6, 18, 7, 2, 8, 32, 3, 27, 2, 10, 50, 11, 2, 6, 12, 24, 72, 13, 2, 14, 98, 3, 15, 75, 2, 8, 32, 128, 17, 2, 6, 18, 54, 162, 19, 2, 8, 20, 50, 200, 3, 21, 147, 2, 22, 242, 23, 2, 6, 12, 24, 48, 96, 288, 5, 125, 2, 26, 338, 3, 27, 243
Offset: 2

Views

Author

Leroy Quet, Dec 20 2007; corrected Jan 20 2008

Keywords

Comments

The first listed row is row 2. Row n contains d(n)-1 (= A032741(n)) terms, where d(n) is the number of positive divisors of n.

Examples

			The positive divisors of 20 are 1,2,4,5,10,20. 1*2=2. 2*4=8. 4*5=20. 5*10=50. 10*20=200. So row 20 is (2,8,20,50,200).
The first few rows of the triangle are:
2;
3;
2, 8;
5;
2, 6, 18;
7;
2, 8, 32;
...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): seq(div[j]*div[j+1], j=1..tau(n)-1) end proc: for n from 2 to 25 do a(n) end do; # yields sequence as a two-dimensional array - Emeric Deutsch, Jan 08 2008
  • Mathematica
    Flatten[Table[Times@@@Partition[Divisors[n],2,1],{n,30}]]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    tabf(nn) = {for (n = 2, nn, d = divisors(n); for (i = 1, #d - 1, print1(d[i]*d[i+1], ", ");););} \\ Michel Marcus, Feb 10 2014

Extensions

More terms from Emeric Deutsch, Jan 08 2008
More terms from Michel Marcus, Feb 10 2014
Showing 1-2 of 2 results.