cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078760 Combinations of a partition: number of ways to label a partition (of size n) with numbers 1 to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 30, 20, 60, 120, 90, 180, 360, 720, 1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040, 1, 8, 28, 56, 56, 168, 336, 70, 280, 420, 840, 1680, 560, 1120, 1680, 3360, 6720, 2520
Offset: 0

Views

Author

Keywords

Comments

This is a function of the individual partitions of an integer. The number of values in each line is given by A000041; thus lines 0 to 5 of the sequence are (1), (1), (1,2), (1,3,6), (1,4,6,12,24). The partitions in each line are ordered with the largest part sizes first, so the line 4 indices are [4], [3,1], [2,2], [2,1,1] and [1,1,1,1]. Note that exponents are often used to represent repeated values in a partition, so the last index could instead be written [1^4]. The combination function (sequence A007318) C(n,m) = C([m,n-m]).
This sequence is also the sequence of multinomial coefficients for partitions ordered lexicographically, matching partition sequence A080577. This is different ordering than in sequence A036038 of multinomial coefficients. - Sergei Viznyuk, Mar 15 2012

Examples

			The irregular table starts:
  [0] {1},
  [1] {1},
  [2] {1, 2},
  [3] {1, 3,  6},
  [4] {1, 4,  6, 12, 24},
  [5] {1, 5, 10, 20, 30, 60, 120},
  [6] {1, 6, 15, 30, 20, 60, 120, 90, 180, 360, 720}
  ...
C([2,1]) = 3 for the labelings ({1,2},{3}), ({1,3},{2}) and ({2,3},{2}).
		

Crossrefs

Different from A036038.

Programs

  • Maple
    g:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> i[2], ifactors(n)[2])):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> g(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 25 2020
  • Mathematica
    Flatten[Table[Apply[Multinomial, IntegerPartitions[i], {1}], {i,0,25}]] (* T. D. Noe, Oct 14 2007 *)
    Flatten[ Multinomial @@@ IntegerPartitions @ # & /@ Range[ 0, 8]] (* Michael Somos, Feb 05 2011 *)
    g[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Total[ee]!/Times@@(ee!)];
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i] & /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    row[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}] & /@ b[n, n];
    T[n_] := g /@ row[n];
    T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)
  • PARI
    C(sig)={vecsum(sig)!/vecprod(apply(k->k!, sig))}
    Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) }  \\ Andrew Howroyd, Mar 25 2020
    
  • SageMath
    def A070289_row(n): return [multinomial(x) for x in Partitions(n)]
    print(flatten([A070289_row(n) for n in range(8)]))  # Peter Luschny, Jun 24 2025

Formula

C([]) = (Sum a(i))! / Product a(i) !.
T(n,k) = A008480(A063008(n,k)). - Andrew Howroyd, Mar 25 2020