A078760 Combinations of a partition: number of ways to label a partition (of size n) with numbers 1 to n.
1, 1, 1, 2, 1, 3, 6, 1, 4, 6, 12, 24, 1, 5, 10, 20, 30, 60, 120, 1, 6, 15, 30, 20, 60, 120, 90, 180, 360, 720, 1, 7, 21, 42, 35, 105, 210, 140, 210, 420, 840, 630, 1260, 2520, 5040, 1, 8, 28, 56, 56, 168, 336, 70, 280, 420, 840, 1680, 560, 1120, 1680, 3360, 6720, 2520
Offset: 0
Examples
The irregular table starts: [0] {1}, [1] {1}, [2] {1, 2}, [3] {1, 3, 6}, [4] {1, 4, 6, 12, 24}, [5] {1, 5, 10, 20, 30, 60, 120}, [6] {1, 6, 15, 30, 20, 60, 120, 90, 180, 360, 720} ... C([2,1]) = 3 for the labelings ({1,2},{3}), ({1,3},{2}) and ({2,3},{2}).
Links
- T. D. Noe, Rows n=0..25 of triangle, flattened
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
- Sergei Viznyuk, C Program
- Index entries for triangles and arrays related to Pascal's triangle.
Programs
-
Maple
g:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> i[2], ifactors(n)[2])): b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> g(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]: seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
-
Mathematica
Flatten[Table[Apply[Multinomial, IntegerPartitions[i], {1}], {i,0,25}]] (* T. D. Noe, Oct 14 2007 *) Flatten[ Multinomial @@@ IntegerPartitions @ # & /@ Range[ 0, 8]] (* Michael Somos, Feb 05 2011 *) g[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Total[ee]!/Times@@(ee!)]; b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i] & /@ b[n - i, Min[n - i, i]], b[n, i - 1]]]; row[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}] & /@ b[n, n]; T[n_] := g /@ row[n]; T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)
-
PARI
C(sig)={vecsum(sig)!/vecprod(apply(k->k!, sig))} Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))} { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
-
SageMath
def A070289_row(n): return [multinomial(x) for x in Partitions(n)] print(flatten([A070289_row(n) for n in range(8)])) # Peter Luschny, Jun 24 2025
Comments