A078761 Sum of the digits of all n-digit numbers.
45, 855, 12600, 166500, 2070000, 24750000, 288000000, 3285000000, 36900000000, 409500000000, 4500000000000, 49050000000000, 531000000000000, 5715000000000000, 61200000000000000, 652500000000000000, 6930000000000000000, 73350000000000000000
Offset: 1
Examples
The sum of the digits of the two-digit numbers 10, 11, 12, ..., 99 is 855. Therefore a(2) = 855.
Links
- Index entries for linear recurrences with constant coefficients, signature (20,-100).
Crossrefs
Cf. A034967.
Programs
-
Mathematica
f[n_] := Module[{i, s}, s = 0; For[i = 10^(n - 1), i < 10^n, i++, s = s + Apply[Plus, IntegerDigits[i]]]; s]; t = Table[f[n], {n, 1, 6}] n=Range[15] a=45*(9*n+1)*10^(n-2) (Adamchuk) Rest[CoefficientList[Series[45x (1-x)/(1-10x)^2,{x,0,20}],x]] (* Harvey P. Dale, Aug 26 2019 *)
Formula
First differences of A034967: a(n) = 45*n*10^(n-1) - 45*(n-1)10^(n-2) = 45*(9*n+1)*10^(n-2) - Alexander Adamchuk, Jan 02 2004
G.f.: 45*x*(1 - x)/(1 - 10*x)^2. - Arkadiusz Wesolowski, Jul 12 2012