A078779 Union of S, 2S and 4S, where S = odd squarefree numbers (A056911).
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..7098
- B. Alspach and M. Mishna, Enumeration of Cayley graphs and digraphs, Discr. Math., 256 (2002), 527-539.
- M. Mishna, Home Page
- M. Muzychuk, On Adam's conjecture for circulant graphs, Discr. Math. 167 (1997), 497-510.
Programs
-
Haskell
a078779 n = a078779_list !! (n-1) a078779_list = m a005117_list $ map (* 2) a005117_list where m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys' | x == y = x : m xs ys | otherwise = y : m xs' ys -- Reinhard Zumkeller, Feb 11 2012, Aug 27 2011
-
PARI
is(n)=issquarefree(n/gcd(n,2)) \\ Charles R Greathouse IV, Nov 05 2017
Formula
a(n) = (Pi^2/7)*n + O(sqrt(n)). - Vladimir Shevelev, Jun 08 2016
Extensions
Edited by N. J. A. Sloane, Sep 13 2006
Comments