cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A046790 Positive numbers divisible by 8 or by the square of an odd prime.

Original entry on oeis.org

8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 45, 48, 49, 50, 54, 56, 63, 64, 72, 75, 80, 81, 88, 90, 96, 98, 99, 100, 104, 108, 112, 117, 120, 121, 125, 126, 128, 135, 136, 144, 147, 150, 152, 153, 160, 162, 168, 169, 171, 175, 176, 180, 184, 189, 192, 196, 198, 200, 207, 208
Offset: 1

Views

Author

David W. Wilson, Dec 11 1999

Keywords

Comments

This sequence has many equivalent definitions:
(D1) Positive numbers divisible by 8 or by the square of an odd prime. (We take this as the main definition, since it is the simplest.)
(D2) Moduli m for which there exist affine maps f:x->a*x + b modulo m, with a > 1, such that f has order m in the affine group. (For example, 8 is a term because f:x->(5x+1) mod 8 is a map with order 8 in the group of affine maps mod 8: the smallest power of f equal to identity is f^8. The maps x->x+1 always have this property, so are excluded from consideration.) - Emmanuel Amiot, Jul 28 2007
(D3) Numbers k such that A005361(k) < A003557(k). - Anthony Browne, Jun 03 2016
(D4) Numbers i such that there is a smaller positive number j such that (i+j)/2 and sqrt(i*j) are integers. (See A046791 for the smallest choice for j.) - David W. Wilson, Dec 11 1999
(D5) Numbers k such that A008475(k) is different from A001414(k). - Benoit Cloitre, Jan 11 2003
For a proof of the equivalence of definitions (D1)-(D5) see the Don Reble link.
(D6) Numbers m >= 8 having a divisor k^2 >= 4 such that m and m/k^2 are of the same parity. (See A046791 for the largest such k.) - Vladimir Shevelev, Jun 06 2006
(D7) Numbers that can be the semiperimeter of a isosceles triangle with integer sides and area. - Peter Kagey, May 17 2019
Closed under multiplication, which may be used to construct the sequence. - David A. Corneth, Jun 07 2016
Complement of A078779. - Omar E. Pol, Jun 11 2016
m is in this sequence if and only if m does not divide 2*radical(m). - Peter Luschny, Mar 05 2019
Verified up to a(290) = 1000, {a(n)} is identical to the sequence of group orders for which there exists at least one group G such that |Char(G)| is a nontrivial divisor of |Normal(G)|, where |Char(G)| is the number of characteristic subgroups of G and |Normal(G)| the number of normal subgroups of G. - Miles Englezou, Jul 20 2024

Crossrefs

Programs

  • Mathematica
    ordreMax[a_, n_]:= Module[{mo, r, s, s0, gcd}, mo=MultiplicativeOrder[a,n]; s= s0=Mod[Sum[a^k,{k,0,mo-1}], n]; Max[Table[gcd=GCD[a-1,b];r=1; While[Mod[s *gcd, n]!=0, s=Mod[s0+a^mos,n];r++ ]; r*mo, {b,0,n-1} ]] ] ordreMax[n_] := Module[{candidats, m,t}, candidats = Select[Range[2,n-1], (GCD[n,# ]==1 && GCD[n, #-1]>1)&]; m=Max[t=Table[ordreMax[a,n], {a, candidats}] ]; {m,Part[candidats,Flatten@Position[t, m] ]}] Module[{resu}, Do[resu=ordreMax[n]; If[First[resu] >=n, Print[n ]], {n,4,200}]] (* This is for definition (D2). Emmanuel Amiot, Jul 28 2007 *)
    Select[Range[210], Mod[#, 8] == 0 || AnyTrue[ Divisors[#], DivisorSigma[0, #] == 3 && Mod[#, 4] != 0 &] &] (* Carlos Eduardo Olivieri, Jun 07 2016 *)
    Module[{upto=250,prs},prs=Prime[Range[2,PrimePi[Sqrt[upto]]]]^2;Join[ Range[ 8,upto,8],Select[Range[upto],AnyTrue[#/prs,IntegerQ]&]]] // Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 18 2018 *)
  • PARI
    is(n)={n%8==0||!issquarefree(n>>!bittest(n,0))} \\ M. F. Hasler, Jun 07 2016
    
  • Sage
    print([n for n in (1..208) if not ZZ(n).divides(2*radical(n))])  # Peter Luschny, Mar 05 2019

Formula

Let A(x) be the number of a(n) <= x. Then A(x) ~ (1 - 7/Pi^2)*x = 0.2907517...*x as x goes to infinity. - Vladimir Shevelev, Jun 07 2016

Extensions

Entry revised by N. J. A. Sloane, with help from Don Reble and several OEIS editors, Jun 07 2016

A121684 Union of {8, 9, 18}, S, 2S and 4S, where S = odd squarefree numbers (A056911).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2006

Keywords

Comments

Numbers n such that the cyclic group Z_n is a CI-group.
The asymptotic density of this sequence is 7/Pi^2. - Amiram Eldar, May 10 2022

Crossrefs

Programs

  • Mathematica
    With[{upto=100},Select[Sort[Join[{8,9,18},Flatten[{#,2#,4#}&/@ Select[ Range[1,upto,2],SquareFreeQ]]]],#<=upto&]] (* Harvey P. Dale, Sep 03 2015 *)

A332713 a(n) = Sum_{d|n} phi(d/gcd(d, n/d)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 14, 15, 13, 17, 16, 19, 20, 21, 22, 23, 21, 22, 26, 22, 28, 29, 30, 31, 24, 33, 34, 35, 32, 37, 38, 39, 35, 41, 42, 43, 44, 40, 46, 47, 39, 44, 44, 51, 52, 53, 44, 55, 49, 57, 58, 59, 60, 61, 62, 56, 46, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 20 2020

Keywords

Crossrefs

Cf. A000010, A001616, A010052, A046790 (numbers n such that a(n) < n), A055653, A061884, A078779 (fixed points), A332619, A332686, A332712.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 70}]
    A055653[n_] := Sum[Boole[GCD[d, n/d] == 1] EulerPhi[d], {d, Divisors[n]}]; a[n_] := Sum[Boole[IntegerQ[(n/d)^(1/2)]] A055653[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020

Formula

Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(s - 1) * Product_{p prime} (1 - p^(-s) + p^(-2*s) - p^(1 - 2*s)).
a(n) = Sum_{d|n} phi(lcm(d, n/d)/d).
a(n) = Sum_{d|n} A010052(n/d) * A055653(d).
Sum_{k=1..n} a(k) ~ c * Pi^6 * n^2 / 1080, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085... - Vaclav Kotesovec, Feb 22 2020
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(n/gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))*gcd(n,k)/n)/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(gcd(n,k))*A055653(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(n/gcd(n,k))*A055653(gcd(n,k))/phi(n/gcd(n,k)). (End)

A046791 A046790 has several definitions, one of which is: "Numbers i such that there is a smaller positive number j such that (i+j)/2 and sqrt(i*j) are integers". The present sequence gives the smallest choice for j.

Original entry on oeis.org

2, 1, 4, 2, 6, 1, 3, 2, 4, 10, 5, 12, 1, 2, 6, 14, 7, 4, 2, 3, 20, 1, 22, 10, 6, 2, 11, 4, 26, 12, 28, 13, 30, 1, 5, 14, 2, 15, 34, 4, 3, 6, 38, 17, 10, 2, 42, 1, 19, 7, 44, 20, 46, 21, 12, 4, 22, 2, 23, 52, 6, 14, 1, 58, 26, 60, 2, 3, 5, 62, 10, 28, 4, 29, 66, 30, 68, 11, 31, 70, 2, 1, 6, 74, 33
Offset: 1

Views

Author

David W. Wilson, Dec 11 1999

Keywords

Comments

Note that A046790 is the complement of A078779. - Omar E. Pol, Jun 11 2016

Examples

			From _Vladimir Shevelev_, Jun 07 2016: (Start)
A046790(5)=24 with even squarefree part (6), so a(5) = 6;
A046790(12)=48 with odd squarefree part (3), so a(12) = 3*4=12.
(End)
		

Crossrefs

Cf. A046790.

Programs

  • PARI
    a(n) = my(n=A046790(n),f=factor(n),p=n%2);f[,2]=f[,2]%2;r=prod(i=1,matsize(f)[1],f[i,1]^f[i,2]);r*=(4^(n%2==0&&r%2==1)) \\ David A. Corneth, Jun 07 2016

Formula

Let b(n)=A046790(n). Let k=k(n) be the greatest number whose square divides b(n) and is such that b(n) and b(n)/k^2 are of the same parity. Then a(n) = b(n)/k^2. - Vladimir Shevelev, Jun 07 2016
Or, equivalently, a(n) is the squarefree part s(n) of b(n), if either b(n) is odd or s(n) is even. Otherwise, when b(n) is even, but s(n) is odd, a(n)=4*s(n). - David A. Corneth, Jun 07 2016

Extensions

Entry revised by N. J. A. Sloane, with help from Don Reble and several OEIS editors. Jun 07 2016

A193551 Smallest number with n as multiplicative projection.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 27, 10, 11, 12, 13, 14, 15, 256, 17, 24, 19, 20, 21, 22, 23, 36, 3125, 26, 19683, 28, 29, 30, 31, 65536, 33, 34, 35, 72, 37, 38, 39, 80, 41, 42, 43, 44, 135, 46, 47, 144, 823543, 160, 51, 52, 53, 216, 55, 112, 57, 58, 59, 60, 61, 62
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2011

Keywords

Comments

A000026(a(n)) = n and A000026(m) <> n for m < a(n);
a(p^k) = p^(p^(k-1)), p prime, k > 0; the sequence is not multiplicative, but for coprime odd numbers u, v: a(u*v) = a(u) * a(v);
A078779 gives fixed points: a(A078779(n)) = A078779(n).

Programs

  • Haskell
    import Data.List (elemIndex, findIndices)
    import Data.Maybe (fromJust)
    a193551 n = (fromJust $ elemIndex n a000026_list) + 1

A304410 Numbers k such that k = Product (p_j^e_j) = Product (p_j*(e_j + 1)).

Original entry on oeis.org

1, 8, 9, 72, 13440, 21120, 24960, 29568, 32640, 34944, 36480, 44160, 45696, 49280, 51072, 54912, 55680, 58240, 59520, 61824, 71040, 71808, 76160, 77952, 78720, 80256, 82560, 83328, 84864, 85120, 90240, 91520, 94848, 97152, 99456, 101760, 103040, 110208, 113280, 114816, 115584, 117120, 119680
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Comments

Numbers k such that A000005(k)*A007947(k) = k.
Fixed points of A304409.
All terms are refactorable numbers (A033950).

Examples

			13440 is a term because 13440 = 2^7*3*5*7 = 2*(7 + 1) * 3*(1 + 1) * 5*(1 + 1) * 7*(1 + 1).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (#[[1]] (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Select[Range[120000], a[#] == # &]
  • PARI
    isok(k) = {my(f = factor(k)); numdiv(f) * vecprod(f[, 1]) == k;} \\ Amiram Eldar, Jan 31 2025

A360523 a(n) = Sum_{d|n} mu(rad(d)) * delta_d(n/d), where rad(n) = A007947(n) and delta_d(n) is the greatest divisor of n that is relatively prime to d.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 5, 7, 4, 10, 4, 12, 6, 8, 12, 16, 7, 18, 8, 12, 10, 22, 10, 23, 12, 24, 12, 28, 8, 30, 27, 20, 16, 24, 14, 36, 18, 24, 20, 40, 12, 42, 20, 28, 22, 46, 24, 47, 23, 32, 24, 52, 24, 40, 30, 36, 28, 58, 16, 60, 30, 42, 58, 48, 20, 66, 32, 44, 24
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

Analogous to the Euler totient function (A000010) as A360522 is analogous to A000203.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - f[i,2]);}

Formula

Multiplicative with a(p^e) = p^e - e.
Dirichlet g.f.: zeta(s-1)*zeta(s)^2 * Product_{p prime} (1 - 3/p^s + 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - p/((p-1)*(p+1)^2)) = 0.3243742337... .
A000010(n) <= a(n) <= A047994(n) (Khan, 2005).
a(n) = A000010(n) if and only if n is in A078779 (i.e., n is either squarefree or twice a squarefree number).
a(n) = A047994(n) if and only if n is in A005117 (i.e., n is squarefree).

A304194 Numbers k such that k = Product (p_j^e_j) = Product (pi(p_j)*p_j), where pi() = A000720.

Original entry on oeis.org

1, 2, 12, 56, 180, 304, 336, 936, 1696, 1824, 2484, 5040, 5328, 6664, 8384, 8512, 9900, 10176, 13176, 14040, 25632, 26208, 27360, 33372, 33712, 37260, 39808, 39984, 47488, 50304, 51072, 52200, 65232, 69552, 79920, 126900, 128448, 142272, 149184, 152640, 162648, 167776, 184064, 193752, 197640
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2018

Keywords

Comments

Numbers k such that A007947(k)*A156061(k) = k or A156061(k) = A003557(k).

Examples

			9900 is a term because 9900 = 2^2 * 3^2 * 5^2 * 11 = prime(1)^2 * prime(2)^2 * prime(3)^2 * prime(5) = 1*prime(1) * 2*prime(2) * 3*prime(3) * 5*prime(5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (PrimePi[#[[1]]] #[[1]] & /@ FactorInteger[n]); a[1] = 1; Select[Range[200000], a[#] == # &]
  • PARI
    isok(n) = {my(f=factor(n)); prod(k=1, #f~, primepi(f[k,1])*f[k,1]) == n;} \\ Michel Marcus, May 08 2018
Showing 1-8 of 8 results.