cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000026 Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 6, 6, 10, 11, 12, 13, 14, 15, 8, 17, 12, 19, 20, 21, 22, 23, 18, 10, 26, 9, 28, 29, 30, 31, 10, 33, 34, 35, 24, 37, 38, 39, 30, 41, 42, 43, 44, 30, 46, 47, 24, 14, 20, 51, 52, 53, 18, 55, 42, 57, 58, 59, 60, 61, 62, 42, 12, 65, 66, 67, 68, 69, 70, 71, 36
Offset: 1

Views

Author

Keywords

Comments

a(n) = n if n is squarefree.
a(2n) = 2n if and only if n is squarefree. - Peter Munn, Feb 05 2017

Examples

			24 = 2^3*3^1, a(24) = 2*3*3*1 = 18.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000026 n = f a000040_list n 1 (0^(n-1)) 1 where
       f _  1 q e y  = y * e * q
       f ps'@(p:ps) x q e y
         | m == 0    = f ps' x' p (e+1) y
         | e > 0     = f ps x q 0 (y * e * q)
         | x < p * p = f ps' 1 x 1 y
         | otherwise = f ps x 1 0 y
         where (x', m) = divMod x p
    a000026_list = map a000026 [1..]
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Maple
    A000026 := proc(n) local e,j; e := ifactors(n)[2]:
    mul(e[j][1]*e[j][2], j=1..nops(e)) end:
    seq(A000026(n), n=1..80); # Peter Luschny, Jan 17 2011
  • Mathematica
    Array[ Times@@Flatten[ FactorInteger[ # ] ]&, 100 ]
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],f[k,1]*f[k,2]))
    
  • PARI
    a(n)=my(f=factor(n)); factorback(f[,1])*factorback(f[,2]) \\ Charles R Greathouse IV, Apr 04 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): f = factorint(n); return prod(p*f[p] for p in f)
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, May 27 2021

Formula

n = Product (p_j^k_j) -> a(n) = Product (p_j * k_j).
Multiplicative with a(p^e) = p*e. - David W. Wilson, Aug 01 2001
a(n) = A005361(n) * A007947(n). - Enrique Pérez Herrero, Jun 24 2010
a(A193551(n)) = n and a(m) != n for m < A193551(n). - Reinhard Zumkeller, Aug 27 2011
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)^2/2) * Product_{p prime} (1 - 3/p^2 + 2/p^3 + 1/p^4 - 1/p^5) = 0.4175724194... . - Amiram Eldar, Oct 25 2022

Extensions

Example, program, definition, comments and more terms added by Olivier Gérard (02/99).

A078779 Union of S, 2S and 4S, where S = odd squarefree numbers (A056911).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 101
Offset: 1

Views

Author

Benoit Cloitre, Jan 11 2003

Keywords

Comments

Numbers n such that the cyclic group Z_n is a DCI-group.
Numbers n such that A008475(n) = A001414(n).
A193551(a(n)) = A000026(a(n)) = a(n). - Reinhard Zumkeller, Aug 27 2011
Union of squarefree numbers and twice the squarefree numbers (A005117). - Reinhard Zumkeller, Feb 11 2012
The complement is A046790. - Omar E. Pol, Jun 11 2016

Crossrefs

Programs

  • Haskell
    a078779 n = a078779_list !! (n-1)
    a078779_list = m a005117_list $ map (* 2) a005117_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y     = x : m xs ys'
                               | x == y    = x : m xs ys
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Feb 11 2012, Aug 27 2011
    
  • PARI
    is(n)=issquarefree(n/gcd(n,2)) \\ Charles R Greathouse IV, Nov 05 2017

Formula

a(n) = (Pi^2/7)*n + O(sqrt(n)). - Vladimir Shevelev, Jun 08 2016

Extensions

Edited by N. J. A. Sloane, Sep 13 2006
Showing 1-2 of 2 results.