cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049016 Expansion of 1/((1-x)^5 - x^5).

Original entry on oeis.org

1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), this sequence (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1-x)^5-x^5) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^5-x^5),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-10,10,-5,2},{1,5,15,35,70},40] (* Harvey P. Dale, Jan 20 2014 *)
  • SageMath
    def A049016_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^5-x^5) ).list()
    A049016_list(30) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^5-x^5) = 1/( (1-2*x)*(1-3*x+4*x^2-2*x^3+x^4) ).
a(10*n+3) = A078789(5*n+3).
a(10*n+5) = A078789(5*n+4).
a(n) = (-1)^n * A000750(n).
Binomial transform of expansion of (1+x)^4/(1-x^5), or (1, 4, 6, 4, 1, 1, 4, 6, 4, 1, ...). - Paul Barry, Mar 19 2004
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5). - Paul Curtz, May 24 2008
G.f.: -1/( x^5 - 1 + 5*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 5*x - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013

A378254 Cogrowth sequence of the 20-element group C10 X C2 = .

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 67, 1002, 8009, 43759, 184758, 646878, 1971883, 5541966, 16231216, 60090032, 290305577, 1523150157, 7564006759, 34099637859, 139541849878, 526321168143, 1878476551128, 6603812572941, 24052434515891, 94278969044262, 396750746960712
Offset: 0

Views

Author

Sean A. Irvine, Nov 20 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.

Crossrefs

Cf. A377840 (C8 X C2), A377627 (C6 X C2), A078789 (D10).

Formula

G.f.: (10*x^9+75*x^8+162*x^7-48*x^6+127*x^5-126*x^4+84*x^3-36*x^2+9*x-1) / ((4*x-1) * (25*x^4+10*x^2-5*x+1) * (x^4+4*x^3+6*x^2-x+1)).

A378276 Cogrowth sequence of the 20-element dicyclic group Dic20 = .

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 6, 7, 19, 9, 61, 88, 226, 377, 945, 1473, 3427, 6154, 13758, 25327, 53967, 102865, 213345, 411700, 849706, 1661885, 3382821, 6668577, 13493719, 26725414, 53861446, 107074403, 215261971, 428704177, 860266725, 1715950208, 3439229842, 6866462849
Offset: 0

Views

Author

Sean A. Irvine, Nov 21 2024

Keywords

Crossrefs

Cf. A377656 (Dic12), A078789 (D10), A378254 (C10 X C2), A378278 (Frob20).

Formula

G.f.: (4*x^9-6*x^8-3*x^7-5*x^6-2*x^5-2*x^4-2*x^3-x^2+1) / ((2*x-1) * (2*x^2+2*x+1) * (x^2-x-1) * (4*x^4-2*x^3+3*x^2-x+1)).

A378278 Cogrowth sequence of the 20-element Frobenius group Frob20 = .

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 3, 7, 15, 27, 51, 99, 199, 403, 819, 1651, 3303, 6579, 13107, 26163, 52327, 104755, 209715, 419635, 839271, 1678131, 3355443, 6710067, 13420135, 26841907, 53687091, 107377459, 214754919, 429503283, 858993459, 1717973811, 3435947623
Offset: 0

Views

Author

Sean A. Irvine, Nov 21 2024

Keywords

Crossrefs

Cf. A078789 (D10), A378254 (C10 X C2), A378276 (Dic20).

Formula

G.f.: (x^6+x^4+x^3-3*x^2+3*x-1) / ((2*x-1) * (x+1) * (x^2+1)/(2*x^2-2*x+1)).
Showing 1-4 of 4 results.