cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077419 Largest Whitney number of Fibonacci lattices J(Z_n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 7, 11, 17, 26, 40, 63, 97, 153, 238, 376, 587, 931, 1458, 2317, 3640, 5794, 9124, 14545, 22951, 36631, 57904, 92512, 146461, 234205, 371281, 594169, 943045, 1510192, 2399460, 3844787, 6114555, 9802895, 15603339, 25027296
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2003

Keywords

Comments

A051286 and A051291, interleaved. a(n) is the maximal element in the n-th row of A079487 or A123245 and in the (n+2)-th row of A078807 or A078808. - Andrey Zabolotskiy, Sep 21 2017

Programs

  • Maple
    with(FormalPowerSeries): with(LREtools): # requires Maple 2022
    gf:= (1 + 2*x + 2*x^4 - x^6 - (1-x^2)*sqrt(1 - 2*x^2 - x^4 - 2*x^6 + x^8))/(2*x*sqrt(1 - 2*x^2 - x^4 - 2*x^6 + x^8));
    re:= FindRE(gf,x,a(n));
    inits:= {seq(a(i-1)=[1,1,1,2,2,3,5,7,11,17,26,40,63,97, 153][i],i=1..14)};
    rm:=  (n+1)*a(n) +(n-2)*a(n-1) +2*(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(-n-3)*a(n-4) +(-n+8)*a(n-5) +2*(-n+6)*a(n-6) +2*(-n+7)*a(n-7) +(n-9)*a(n-8) +(n-10)*a(n-9)=0;
    minre:= MinimalRecurrence(re, a(n), inits); minrm:= MinimalRecurrence(rm, a(n), inits); # shows that Mathar's recurrence is equivalent
    f:= REtoproc(re,a(n),inits); seq(f(n),n=0..40); # Georg Fischer, Oct 22 2022
  • Mathematica
    gf[x_] = (1 + 2 x + 2 x^4 - x^6 - (1 - x^2) Sqrt[1 - 2 x^2 - x^4 - 2 x^6 + x^8])/(2 x Sqrt[1 - 2 x^2 - x^4 - 2 x^6 + x^8]);
    Table[SeriesCoefficient[gf[x], {x, 0, n}], {n, 0, 40}] (* Hugo Pfoertner, Oct 22 2022 *)

Formula

G.f.: (1 + 2 x + 2 x^4 - x^6 - (1-x^2) sqrt(1 - 2 x^2 - x^4 - 2 x^6 + x^8) )/(2x sqrt(1 - 2 x^2 - x^4 - 2 x^6 + x^8)). - Emanuele Munarini, Mar 05 2007
a(n) ~ phi^(n+2) / (5^(1/4) * sqrt(2*Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 22 2017
D-finite with recurrence: (n+1)*a(n) +(n-2)*a(n-1) +2*(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(-n-3)*a(n-4) +(-n+8)*a(n-5) +2*(-n+6)*a(n-6) +2*(-n+7)*a(n-7) +(n-9)*a(n-8) +(n-10)*a(n-9)=0. - R. J. Mathar, Nov 19 2019

Extensions

More terms from Emanuele Munarini, Mar 05 2007

A078807 Triangular array T given by T(n,k) = number of 01-words of length n having exactly k 1's, all runlengths odd and first letter 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 3, 3, 3, 2, 1, 0, 0, 1, 3, 4, 5, 4, 3, 1, 1, 4, 6, 7, 7, 5, 3, 1, 0, 0, 1, 4, 7, 10, 11, 10, 7, 4, 1, 1, 5, 10, 14, 17, 16, 13, 8, 4, 1, 0, 0, 1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1, 1, 6, 15, 25, 35, 40, 39, 32, 22, 12, 5, 1, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2002

Keywords

Comments

Row sums: 1,1,2,3,5,8,13,..., the Fibonacci numbers (A000045).

Examples

			T(6,2) counts the words 010001 and 000101. Top of triangle:
1 = T(1,0)
0 1 = T(2,0) T(2,1)
1 1 0
0 1 1 1
1 2 1 1 0
		

References

  • Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.

Crossrefs

Formula

T(n, k)=T(n-1, n-k-1)+T(n-3, n-k-3)+...+T(n-2m-1, n-k-2m-1), where m=[(n-1)/2] and (by definition) T(i, j)=0 if i<0 or j<0 or i=j.

Extensions

Row 0 removed to stick to the triangle format by Andrey Zabolotskiy, Sep 22 2017

A123245 Triangle A079487 with reversed rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 3, 1, 1, 3, 4, 5, 4, 3, 1, 1, 3, 5, 7, 7, 6, 4, 1, 1, 4, 7, 10, 11, 10, 7, 4, 1, 1, 4, 8, 13, 16, 17, 14, 10, 5, 1, 1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1
Offset: 0

Views

Author

Roger L. Bagula, Oct 07 2006

Keywords

Comments

Row sums give Fibonacci numbers (A000045).

Examples

			{1},
{1, 1},
{1, 1, 1},
{1, 1, 2, 1},
{1, 2, 2, 2, 1},
{1, 2, 3, 3, 3, 1},
{1, 3, 4, 5, 4, 3, 1},
{1, 3, 5, 7, 7, 6, 4, 1},
{1, 4, 7, 10, 11, 10, 7, 4, 1},
{1, 4, 8, 13, 16, 17, 14, 10, 5, 1},
{1, 5, 11, 18, 24, 26, 24, 18, 11, 5, 1}
		

Crossrefs

Programs

  • Mathematica
    p[0, x] = 1; p[1, x] = x + 1;
    p[k_, x_] := p[k, x] = If[Mod[k, 2] == 0, x*p[k - 1, x] + p[k - 2, x], p[k - 1, x] + x^2*p[k - 2, x]];
    Table[CoefficientList[p[n, x], x], {n, 0, 10}] // Flatten

Formula

p(k, x) = x*p(k - 1, x) + p(k - 2, x) for k even, otherwise p(k, x) = p(k - 1, x) + x^2*p(k - 2, x).

Extensions

Edited by Joerg Arndt, May 26 2015
Offset corrected by Andrey Zabolotskiy, Sep 22 2017

A078821 Triangular array T given by T(n,k) = number of 01-words of length n having exactly k 1's and all runlengths odd.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 2, 2, 2, 0, 1, 2, 2, 2, 2, 1, 0, 2, 4, 4, 4, 2, 0, 1, 3, 4, 5, 5, 4, 3, 1, 0, 2, 6, 8, 10, 8, 6, 2, 0, 1, 4, 7, 10, 12, 12, 10, 7, 4, 1, 0, 2, 8, 14, 20, 22, 20, 14, 8, 2, 0, 1, 5, 11, 18, 25, 29, 29, 25, 18, 11, 5, 1, 0, 2, 10, 22, 36, 48, 52, 48, 36, 22, 10, 2, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2002

Keywords

Comments

Rows are symmetric. Row sums (0,2,2,4,6,10,16,26,...) are given by 2*F(n), where F(n) is the n-th Fibonacci number, A000045(n).

Examples

			T(6,2) counts the words 010001, 000101, 101000 and 100010.
Top of triangle:
  0
  1 1
  0 2 0
  1 1 1 1
  0 2 2 2 0
  1 2 2 2 2 1
		

References

  • Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.

Crossrefs

Formula

T(n, k) = A078807(n, k) + A078808(n, k).
Showing 1-4 of 4 results.