cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078843 Where 3^n occurs in n-almost primes, starting at a(0)=1.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Examples

			a(3) = 5 since 3^3 is the 5th 3-almost-prime: 8,12,18,20,27,....., A014612.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 3^n], {n, 2, 37}] (* Robert G. Wilson v, Feb 09 2006 *)
  • PARI
    a(n)=sum(i=1,3^n,if(bigomega(i)-n,0,1))
    
  • PARI
    { appi(k,n,m=2) = local(r=0);
    if(k==0,return(1));
    if(k==1,return(primepi(n)));
    forprime(p=m, floor(sqrtn(n,k)+1e-20),
    r+=appi(k-1,n\p,p)-(k==2)*(primepi(p)-1));
    r }
    { appi3(k,n) = appi(k,n) - if(k>=1,appi(k-1,n\3)) }
    a=1; for(n=1,50, k=ceil(n*log(5/3)/log(5/2)); a+=appi3(n-k,3^n\2^k); print1(a,", "))
    \\ Max Alekseyev, Jan 06 2008
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A078843(n):
        def almostprimepi(n,k):
            def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
        return almostprimepi(3**n,n) if n else 1 # Chai Wah Wu, Sep 01 2024

Formula

a(n) = a(n-1) + appi3(n-k, floor(3^n/2^k)), where k = ceiling(n*c) with c = log(5/3)/log(5/2) = 0.55749295065024006729857073190835923443... and appi3(k,n) is the number of k-almost primes not divisible by 3 and not exceeding n. - Max Alekseyev, Jan 06 2008

Extensions

a(14)-a(37) from Robert G. Wilson v, Feb 09 2006