A078920 Upper triangle of Catalan Number Wall.
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 14, 4, 1, 1, 42, 84, 30, 5, 1, 1, 132, 594, 330, 55, 6, 1, 1, 429, 4719, 4719, 1001, 91, 7, 1, 1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1, 1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1, 1, 16796, 3711916, 37119160, 37119160, 6852768, 395352, 11628, 285, 10, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) starts as follows: 1; 1, 1; 1, 2, 1; 1, 5, 3, 1; 1, 14, 14, 4, 1; 1, 42, 84, 30, 5, 1; 1, 132, 594, 330, 55, 6, 1; 1, 429, 4719, 4719, 1001, 91, 7, 1; 1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1; 1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- R. Bacher, Matrices related to the Pascal triangle, arXiv:math/0109013 [math.CO], 2001.
- Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
- M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
- P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, arXiv:math/0503002 [math.CO], 2005.
- P. J. Forrester and A. Gamburd, Counting formulas associated with some random matrix averages, J. Combin. Theory Ser. A 113(6) (2006), 934-951.
- M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, arXiv:math/0607163 [math.CO], 2006.
- M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, Electron. J. Combin. 14 (2007), R64.
- C. Krattenthaler, A. J. Guttmann and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, J. Phys. A: Math. Gen. 33 (2000), 8835-8866.
- Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, arXiv:1505.07665 [math.CO], 2015.
- Vincent Pilaud, Brick polytopes, lattice quotients, and Hopf algebras, J. Combin. Theory Ser. A 155 (2018), 418-457.
- Michael Somos, Number Walls in Combinatorics.
Crossrefs
Programs
-
Maple
T:= (n, k)-> mul(mul((i+j+2*k)/(i+j), j=i..n-k), i=1..n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 04 2019
-
Mathematica
T[n_, k_] := Product[(2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!, {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2015, adapted from PARI *)
-
PARI
T(n,k)=if(k<0 || k>n,0,prod(i=0,k-1,(2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!))
-
PARI
{C(n)=if(n<0,0,(2*n)!/n!/(n+1)!)}; T(n,k)=if(k<0 || k>n,0,matdet(matrix(k,k,i,j,C(i+j-1+n-k))))
-
Sage
def A078920(n,k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..k-1) ) flattened([[A078920(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
Formula
T(n,k) = Product_{i=1..n-k} Product_{j=i..n-k} (i+j+2*k)/(i+j). [corrected by Petros Hadjicostas, Jul 24 2019]
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(n-k+1)!)*Product_{j=0..k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
Extensions
T(0,0) = 1 prepended by Petros Hadjicostas, Jul 24 2019
Comments