A078937 Square of lower triangular matrix of A056857 (successive equalities in set partitions of n).
1, 2, 1, 6, 4, 1, 22, 18, 6, 1, 94, 88, 36, 8, 1, 454, 470, 220, 60, 10, 1, 2430, 2724, 1410, 440, 90, 12, 1, 14214, 17010, 9534, 3290, 770, 126, 14, 1, 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1, 610182, 809262, 511704, 204120, 57204, 11844, 1848, 216, 18, 1
Offset: 0
Examples
[0] 1; [1] 2, 1; [2] 6, 4, 1; [3] 22, 18, 6, 1; [4] 94, 88, 36, 8, 1; [5] 454, 470, 220, 60, 10, 1; [6] 2430, 2724, 1410, 440, 90, 12, 1; [7] 14214, 17010, 9534, 3290, 770, 126, 14, 1; [8] 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1;
Crossrefs
Programs
-
Maple
# Computes triangle as a matrix M(dim, p). # A023531 (p=0), A056857 (p=1), this sequence (p=2), A078938 (p=3), ... with(LinearAlgebra): M := (n, p) -> local j,k; MatrixPower(subs(exp(1) = 1, MatrixExponential(MatrixExponential(Matrix(n, n, [seq(seq(`if`(j = k + 1, j, 0), k = 0..n-1), j = 0..n-1)])))), p): M(8, 2); # Peter Luschny, Mar 28 2024
-
PARI
k=9; m=matpascal(k)-matid(k+1); pe=matid(k+1)+sum(j=1,k,m^j/j!); A=pe^2; A /* Gottfried Helms, Apr 08 2007; amended by Georg Fischer Mar 28 2024 */
Formula
PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,column] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1] - Gottfried Helms, Apr 08 2007
Extensions
Entry revised by N. J. A. Sloane, Apr 25 2007
a(38) corrected by Georg Fischer, Mar 28 2024
Comments