A078869 Number of n-tuples with elements in {2,4,6} which can occur as the differences between n+1 consecutive primes > n+1. (Values of a(11), ..., a(18) are conjectured to be correct, but are only known to be upper bounds.)
3, 7, 15, 26, 38, 48, 67, 92, 105, 108, 109, 118, 130, 128, 112, 80, 36, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture
Crossrefs
Programs
-
Mathematica
test[tuple_] := Module[{r, sums, i, j}, r=Length[tuple]; sums=Prepend[tuple.Table[If[j>=i, 1, 0], {i, 1, r}, {j, 1, r}], 0]; For[i=1, Prime[i]<=r+1, i++, If[Length[Union[Mod[sums, Prime[i]]]]==Prime[i], Return[False]]]; True]; tuples[0]={{}}; tuples[n_] := tuples[n]=Select[Flatten[Outer[Append, tuples[n-1], {2, 4, 6}, 1], 1], test]; a[n_] := Length[tuples[n]]
Extensions
Edited by Dean Hickerson, Dec 20 2002
Comments