cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078971 Numbers n such that C(4n,n)/(3n+1) (A002293) is not divisible by 4.

Original entry on oeis.org

0, 1, 3, 5, 11, 13, 21, 43, 45, 53, 85, 171, 173, 181, 213, 341, 683, 685, 693, 725, 853, 1365, 2731, 2733, 2741, 2773, 2901, 3413, 5461, 10923, 10925, 10933, 10965, 11093, 11605, 13653, 21845, 43691, 43693, 43701, 43733, 43861, 44373, 46421, 54613
Offset: 1

Views

Author

Benoit Cloitre, Jan 14 2003

Keywords

Comments

Stanica observes that the sequence in binary forms a pattern where 1 bits are inserted into the word 1010101...:
1 11
101 1011 1101
10101 101011 101101 110101
1010101 10101011 10101101 10110101 11010101...

Crossrefs

Cf. A000225 (C(2n, n)/(n+1) is not divisible by 2), A003462 (C(3n, n)/(2n+1) is not divisible by 3), A003463 (C(5n, n)/(4n+1) is not divisible by 5).

Programs

  • Magma
    [n: n in [0..2*10^4] | not IsZero(Binomial(4*n,n) div (3*n+1) mod 4)]; // Vincenzo Librandi, Apr 16 2015
    
  • Mathematica
    Select[ Range[0, 65000], Mod[ Binomial[4#, # ]/(3# + 1), 4] != 0 &] (* Robert G. Wilson v, Oct 12 2005 *)
  • PARI
    isok(n) = binomial(4*n,n)/(3*n+1) % 4; \\ Michel Marcus, Apr 16 2015
    
  • Python
    from _future_ import division
    A078971_list = []
    for t in range(100):
        A078971_list.append((2**(2*t)-1)//3)
        for j in range(t):
            A078971_list.append((2**(2*t+1)+2**(2*j+1)-1)//3) # Chai Wah Wu, Mar 06 2016

Extensions

Comments and more terms from Ralf Stephan, Oct 30 2003
a(28)-a(44) from Robert G. Wilson v, Oct 12 2005