A078946
Primes p such that p, p+2, p+6, p+12 and p+14 are consecutive primes.
Original entry on oeis.org
17, 227, 1277, 1607, 3527, 3917, 4637, 4787, 27737, 38447, 39227, 44267, 71327, 97367, 99707, 113147, 122027, 122387, 124337, 165707, 183497, 187127, 191447, 197957, 198827, 275447, 290657, 312197, 317957, 347057, 349397, 416387, 418337, 421697, 427067, 443867
Offset: 1
227 is in the sequence since 227, 229 = 227 + 2, 233 = 227 + 6, 239 = 227 + 12 and 241 = 227 + 14 are consecutive primes.
-
[p: p in PrimesInInterval(7,1000000) | forall{i: i in [2,6,12,14] | IsPrime(p+i)}]; // Vincenzo Librandi, Apr 19 2015
-
Rest@ Select[Prime@ Range@ 36000, AllTrue[{2, 6, 12, 14} + #, PrimeQ] &] (* Michael De Vlieger, Apr 18 2015, Version 10 *)
Select[Partition[Prime[Range[36000]],5,1],Differences[#]=={2,4,6,2}&][[All,1]] (* Harvey P. Dale, Jun 14 2022 *)
-
isok(p) = isprime(p) && (nextprime(p+1)==p+2) && (nextprime(p+3)== p+6) && (nextprime(p+7)==p+12) && (nextprime(p+13)==p+14); \\ Michel Marcus, Dec 10 2013
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078969
Primes p such that the differences between the 5 consecutive primes starting with p are (6,6,6,4).
Original entry on oeis.org
3301, 15901, 18211, 30091, 53611, 71341, 77551, 80911, 89101, 120811, 252151, 285451, 292471, 294781, 344251, 601801, 616501, 744811, 792691, 809821, 908521, 912391, 1152631, 1154221, 1279801, 1376491, 1398031, 1455361, 1464271, 1500511, 1503031, 1555111, 1594261
Offset: 1
30091 is in the sequence since 30091, 30097 = 30091 + 6, 30103 = 30091 + 12, 30109 = 30091 + 18 and 30113 = 30091 + 22 are consecutive primes.
-
Select[Partition[Prime[Range[150000]], 5, 1], Differences[#] == {6,6,6,4} &][[;;, 1]] (* Amiram Eldar, Feb 22 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 6 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 22 2025
A078947
Primes p such that the differences between the 5 consecutive primes starting with p are (2,4,6,6).
Original entry on oeis.org
41, 641, 1091, 4001, 9461, 26681, 26711, 44531, 79811, 103991, 110921, 112571, 172421, 223241, 276821, 289841, 290021, 317771, 373181, 381371, 434921, 450881, 493121, 602081, 678761, 788351, 834131, 907211, 974861, 1076501, 1081121, 1097891, 1200371, 1409531, 1426151
Offset: 1
641 is in the sequence since 641, 643 = 641 + 2, 647 = 641 + 6, 653 = 641 + 12 and 659 = 641 + 18 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 4, 6, 6} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078948
Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,4,2).
Original entry on oeis.org
29, 59, 269, 1289, 2129, 2789, 5639, 8999, 13679, 14549, 18119, 36779, 62129, 75989, 80669, 83219, 88799, 93479, 113159, 115769, 124769, 132749, 150209, 160079, 163979, 203309, 207509, 223829, 228509, 278489, 282089, 284729, 298679, 312929, 313979, 323369, 337859
Offset: 1
59 is in the sequence since 59, 61 = 59 + 2, 67 = 59 + 8, 71 = 59 + 12 and 73 = 59 + 14 are consecutive primes.
-
K:=26*10^7+1;; # to get all terms <= K.
P:=Filtered([1,3..K],IsPrime);; I:=[2,6,4,2];;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
Q:=List(Positions(List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]),I),i->P[i]); # Muniru A Asiru, Sep 04 2017
-
for i from 1 to 10^5 do if [ithprime(i+1),ithprime(i+2),ithprime(i+3),ithprime(i+4)] = [ithprime(i)+2,ithprime(i)+8,ithprime(i)+12,ithprime(i)+14] then print(ithprime(i)); fi; od; # Muniru A Asiru, Sep 04 2017
-
Select[Partition[Prime[Range[26000]],5,1],Differences[#]=={2,6,4,2}&][[;;,1]] (* Harvey P. Dale, Dec 10 2024 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 4 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078949
Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,4,6).
Original entry on oeis.org
71, 431, 2339, 2381, 5849, 6959, 27791, 32561, 41609, 45119, 46439, 48479, 51419, 54401, 63599, 78779, 81551, 106859, 115319, 130631, 138569, 143501, 153269, 166601, 183569, 196169, 204359, 229751, 246929, 266081, 279119, 321311, 326999, 350729, 357659, 362741
Offset: 1
71 is in the sequence since 71, 73 = 71 + 2, 79 = 71 + 8, 83 = 71 + 12 and 89 = 71 + 18 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 6, 4, 6} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078950
Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,6,4).
Original entry on oeis.org
149, 599, 27059, 31319, 42179, 65699, 75209, 85829, 87539, 92219, 135599, 170759, 205949, 221069, 249419, 274829, 278609, 280589, 287849, 302579, 307259, 308309, 350429, 355499, 398339, 406499, 416399, 422549, 541529, 566549, 573479, 585839, 603899, 609599, 637709
Offset: 1
149 is in the sequence since 149, 151 = 149 + 2, 157 = 149 + 8, 163 = 149 + 14 and 167 = 149 + 18 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 6, 6, 4} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078951
Primes p such that the differences between the 5 consecutive primes starting with p are (2,6,6,6).
Original entry on oeis.org
3299, 5099, 6359, 19469, 30089, 53609, 63689, 71339, 77549, 80909, 105359, 119549, 152939, 186869, 292469, 302969, 344249, 348239, 408209, 415949, 652739, 707669, 737039, 792689, 818339, 831539, 852749, 886979, 910199, 974969, 1072829, 1152629, 1290629, 1368329
Offset: 1
5099 is in the sequence since 5099, 5101 = 5099 + 2, 5107 = 5099 + 8, 5113 = 5099 + 14 and 5119 = 5099 + 20 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 6, 6, 6} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 6 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078952
Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,4,6).
Original entry on oeis.org
13, 37, 223, 1087, 1423, 1483, 2683, 4783, 20743, 27733, 29017, 33343, 33613, 35527, 42457, 44263, 45817, 55813, 93487, 108877, 110917, 113143, 118897, 151237, 165703, 187123, 198823, 203653, 205417, 221713, 234187, 234457, 258607, 276817, 284227, 289837, 308923
Offset: 1
37 is in the sequence since 37, 41 = 37 + 4, 43 = 37 + 6, 47 = 37 + 10 and 53 = 37 + 16 are consecutive primes.
-
K:=2*10^7+1;; # to get all terms <= K.
P:=Filtered([1,3..K],IsPrime);; I:=[4,2,4,6];;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
P3:=List(Positions(P2,I),i->P[i]); # Muniru A Asiru, Aug 21 2017
-
for i from 1 to 10^7 do if ithprime(i+1)=ithprime(i)+4 and ithprime(i+2)=ithprime(i)+6 and ithprime(i+3)=ithprime(i)+10 and ithprime(i+4)=ithprime(i)+16 then print(ithprime(i)); fi; od; # Muniru A Asiru, Aug 21 2017
-
With[{s = Differences@ Prime@ Range[10^5]}, Prime[SequencePosition[s, {4, 2, 4, 6}][[All, 1]]]] (* Michael De Vlieger, Aug 21 2017 *)
-
lista(nn) = forprime(p=3, nn, if(nextprime(p+1)==p+4 && nextprime(p+5)==p+6 && nextprime(p+7)==p+10 && nextprime(p+11)==p+16, print1(p, ", "))); \\ Altug Alkan, Aug 21 2017
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 2 && p4 - p3 == 4 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078953
Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,6,4).
Original entry on oeis.org
67, 2377, 21487, 31177, 65167, 67927, 81547, 139297, 166597, 178597, 185527, 305017, 305407, 321817, 341947, 390487, 427417, 448867, 547357, 600877, 635347, 668527, 693727, 697507, 752287, 764887, 783787, 812347, 819487, 877867, 1196857, 1229197, 1262617, 1279177
Offset: 1
67 is in the sequence since 67, 71 = 67 + 4, 73 = 67 + 6, 79 = 67 + 12 and 83 = 67 + 16 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {4,2,6,4} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 2 && p4 - p3 == 6 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A078954
Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,2,4).
Original entry on oeis.org
1597, 3907, 12097, 12907, 38317, 58897, 65827, 90007, 90187, 112237, 129277, 134077, 140407, 176317, 204427, 336757, 374977, 390097, 394717, 435637, 486667, 538147, 543997, 588937, 618577, 678637, 702337, 922627, 990277, 996157, 1086247, 1248337, 1326037, 1348537
Offset: 1
90007 is in the sequence since 90007, 90011 = 90007 + 4, 90017 = 90007 + 10, 90019 = 90007 + 12 and 90023 = 90007 + 16 are consecutive primes.
-
Transpose[Select[Partition[Prime[Range[85000]],5,1],Differences[#] == {4,6,2,4}&]][[1]] (* Harvey P. Dale, Sep 30 2012 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 4 && p3 - p2 == 6 && p4 - p3 == 2 && p5 - p4 == 4, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
Showing 1-10 of 21 results.
Comments