A079028 a(0) = 1, a(n) = (n + 4)*4^(n-1) for n >= 1.
1, 5, 24, 112, 512, 2304, 10240, 45056, 196608, 851968, 3670016, 15728640, 67108864, 285212672, 1207959552, 5100273664, 21474836480, 90194313216, 377957122048, 1580547964928, 6597069766656, 27487790694400, 114349209288704, 474989023199232, 1970324836974592, 8162774324609024
Offset: 0
Links
- F. Disanto, A. Frosini, R. Pinzani and S. Rinaldi, A closed formula for the number of convex permutominoes, arXiv:math/0702550 [math.CO], 2007.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{8, -16}, {1, 5}, 22] (* Jean-François Alcover, Nov 06 2018 *)
-
Sage
[lucas_number2(n, 4, 0)*n/2^10 for n in range(4, 26)] # Zerinvary Lajos, Mar 13 2009
Formula
a(n) = 8*a(n-1)-16*a(n-2), a(0) = 1, a(1) = 5. - Paul Barry, Mar 07 2003
G.f.: (1 - 3*x)/(1 - 4*x)^2. - Philippe Deléham, Dec 11 2008
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = 1024*log(4/3) - 880/3.
Sum_{n>=0} (-1)^n/a(n) = 688/3 - 1024*log(5/4). (End)
E.g.f.: exp(4*x)*(1 + x). - Stefano Spezia, Mar 05 2023
Extensions
More terms from Stefano Spezia, Mar 05 2023
Comments