A081104 Duplicate of A079028.
1, 5, 24, 112, 512, 2304, 10240, 45056, 196608, 851968, 3670016, 15728640
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[(n+6)*6^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
CoefficientList[Series[(1 - 5 x)/(1 - 6 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *) LinearRecurrence[{12,-36},{1,7},30] (* Harvey P. Dale, Nov 07 2013 *)
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(3*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
x='x+O('x^30); Vec(serlaplace((1+x)*exp(3*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
Rows begin: {1, 2, 3, 4, 5, 6, 7,..}, {1, 3, 8, 20, 48, 112, 256,..}, {1, 4, 15, 54, 189, 648, 2187,..}, {1, 5, 24, 112, 512, 2304, 10240,..}, {1, 6, 35, 200, 1125, 6250, 34375,..}, {1, 7, 48, 324, 2160, 14256, 93312,..}, {1, 8, 63, 490, 3773, 28812, 218491,..},..
A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1); Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(5*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
With[{nn=30},CoefficientList[Series[(1+x)Exp[5x]Cosh[x],{x,0,nn}],x]Range[0,nn]!] (* or *) LinearRecurrence[{20,-148,480,-576},{1,6,36,218},30] (* Harvey P. Dale, Aug 27 2012 *)
x='x+O('x^30); Vec(serlaplace((1+x)*exp(5*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
Row 1 is 1,3,1; indeed, K_1 is the one-vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A, C}. Triangle begins: 1; 1,3,1; 1,6,10,6,1; 1,9,27,38,27,9,1; 1,12,52,116,150,116,52,12,1;
G := (1-z-x*z-x^2*z)/(1-z-2*x*z-x^2*z)^2: Gser := simplify(series(G, z = 0, 10)): for n from 0 to 9 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 9 do seq(coeff(P[n], x, i), i = 0 .. 2*n) end do;# yields sequence in triangular form
Comments