A081107
7th binomial transform of (1,1,0,0,0,0,...).
Original entry on oeis.org
1, 8, 63, 490, 3773, 28812, 218491, 1647086, 12353145, 92236816, 686011319, 5084554482, 37569208117, 276825744020, 2034669218547, 14920907602678, 109193914728689, 797590333670424, 5815762849680175, 42338753545671674, 307770170005074861, 2234183456333136028
Offset: 0
A089944
Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0
Rows begin:
{1, 2, 3, 4, 5, 6, 7,..},
{1, 3, 8, 20, 48, 112, 256,..},
{1, 4, 15, 54, 189, 648, 2187,..},
{1, 5, 24, 112, 512, 2304, 10240,..},
{1, 6, 35, 200, 1125, 6250, 34375,..},
{1, 7, 48, 324, 2160, 14256, 93312,..},
{1, 8, 63, 490, 3773, 28812, 218491,..},..
-
A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
-
T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))
A082309
Expansion of e.g.f.: (1+x)*exp(5*x)*cosh(x).
Original entry on oeis.org
1, 6, 36, 218, 1336, 8280, 51776, 325792, 2057856, 13023104, 82456576, 521826816, 3298727936, 20822038528, 131210919936, 825373859840, 5182772248576, 32487861092352, 203308891897856, 1270289732337664, 7924975155019776
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(5*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
-
With[{nn=30},CoefficientList[Series[(1+x)Exp[5x]Cosh[x],{x,0,nn}],x]Range[0,nn]!] (* or *) LinearRecurrence[{20,-148,480,-576},{1,6,36,218},30] (* Harvey P. Dale, Aug 27 2012 *)
-
x='x+O('x^30); Vec(serlaplace((1+x)*exp(5*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
A136526
Coefficients polynomials B(x, n) = ((1 + a + b)*x - c)*B(x, n-1) - a*b*B(x, n-2) with a = 3, b = 2, and c = 0.
Original entry on oeis.org
1, 0, 1, -6, 0, 6, 0, -42, 0, 36, 36, 0, -288, 0, 216, 0, 468, 0, -1944, 0, 1296, -216, 0, 4536, 0, -12960, 0, 7776, 0, -4104, 0, 38880, 0, -85536, 0, 46656, 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936, 0, 32400, 0, -544320, 0, 2379456, 0, -3639168, 0, 1679616
Offset: 0
Triangle begins as:
1;
0, 1;
-6, 0, 6;
0, -42, 0, 36;
36, 0, -288, 0, 216;
0, 468, 0, -1944, 0, 1296;
-216, 0, 4536, 0, -12960, 0, 7776;
0, -4104, 0, 38880, 0, -85536, 0, 46656;
1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936;
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 93
Cf.
A000567,
A002414,
A002419,
A016921,
A027810,
A030192,
A034265,
A051843,
A054487,
A055848,
A081106,
A136531.
-
f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >;
A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >;
[A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
-
(* First program *)
a= (b+1)/(b-1); c=0; b=2;
B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
(* Second program *)
B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]);
Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
-
def f(n,k):
if (k==0): return (-1)^(n//2)
else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1)
def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k)
flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022
Showing 1-4 of 4 results.
Comments