cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A114410 Cumulative sum of double primorials (A079078).

Original entry on oeis.org

1, 3, 6, 16, 37, 147, 420, 2290, 7477, 50487, 200910, 1534220, 7099871, 61765581, 301088574, 2870376944, 15554495573, 167142509403, 940873745772, 11097270672382, 66032188454581, 807449164097111, 5147307668890832
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

The cumulative sum is prime for a(2) = 3, a(4) = 37, a(8) = 7477, a(12) = 7099871, a(16) = 15554495573. The sum a(n) is semiprime for n = 2, 9.

Examples

			n 0## + ... + n##
0 1.
1 1+2 = 3.
2 1+2+3 = 6.
3 1+2+3+10 = 16.
4 1+2+3+10+21 = 37.
5 1+2+3+10+21+110 = 147.
6 1+2+3+10+21+110+273 = 420.
7 1+2+3+10+21+110+273+1870 = 2290.
8 1+2+3+10+21+110+273+1870+5187 = 7477.
9 1+2+3+10+21+110+273+1870+5187+ 43010 = 50487.
10 1+2+3+10+21+110+273+1870+5187+ 43010 + 150423 = 200910.
		

Crossrefs

Cf. A079078.

Programs

  • Mathematica
    p[0]=1; p[1]=2; p[n_] := p[n] = Prime[n]*p[n - 2]; Accumulate[p /@ Range[0, 22]] (* Giovanni Resta, Jun 14 2016 *)

Formula

a(n) = 0## + 1## + ... + n##, where n## = p(n)*(n-2)##, where p(n) is the n-th prime.

Extensions

Data corrected by Giovanni Resta, Jun 14 2016

A114411 Triple primorial n### = n#3.

Original entry on oeis.org

1, 2, 3, 5, 14, 33, 65, 238, 627, 1495, 6902, 19437, 55315, 282982, 835791, 2599805, 14998046, 49311669, 158588105, 1004869082, 3501128499, 11576931665, 79384657478, 290593665417, 1030346918185, 7700311775366, 29349960207117
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to triple factorial A007661 = n!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n###)*((n-1)###)*((n-2)###) = n#. n### is a k-almost prime for k = ceiling(n/3).

Examples

			n### is also written n#3.
0### = p(0) = 1.
1### = p(1) = 2.
2### = p(2) = 3.
3### = p(3)p(0) = 5*1 = 5.
4### = p(4)p(1) = 7*2 = 14.
5### = p(5)p(2) = 11*3 = 33.
6### = p(6)p(3)p(0) = 13*5*1 = 65.
7### = p(7)p(4)p(1) = 17*7*2 = 238.
8### = p(8)p(5)p(2) = 19*11*3 = 627.
9### = p(9)p(6)p(3)p(0) = 23*13*5*1 = 1495.
10### = p(10)p(7)p(4)p(1) = 29*17*7*2 = 6902.
11### = p(11)p(8)p(5)p(2) = 31*19*11*3 = 19437.
12### = 37*23*13*5*1 = 55315.
13### = 41*29*17*7*2 = 282982.
14### = 43*31*19*11*3 = 835791.
15### = 47*37*23*13*5*1 = 2599805.
27### = 106125732573055 = 5 * 13 * 23 * 37 * 47 * 61 * 73 * 89 * 103.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 3;
    a[n_] := a[n - 3] * Prime[n]
    Array[a, 27, 0] (* Jon Maiga, Aug 04 2019 *)

Formula

a(n) = n### = prime(n)*((n-3)###) = Prod[i == n mod 3, to n] prime(i). Notationally, prime(0) = 1; (-n)### = 0### = 1.

A213005 a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number.

Original entry on oeis.org

1, 3, 5, 9, 17, 33, 45, 72, 143, 152, 303, 420, 451, 603, 952, 1398, 1572, 2408, 3762, 4233, 5880, 6325, 8469, 13384, 20079, 34189, 62769, 82665, 87448, 161037, 287283, 371337, 515745, 533505, 573815, 734484, 737035, 737149, 767505, 825495, 887865, 1136468, 2272935
Offset: 0

Views

Author

Alex Ratushnyak, Aug 03 2012

Keywords

Comments

Corresponding triangular numbers t(n)=a(n)*a(n+1): 3, 15, 45, 153, 561, 1485, 3240, 10296, 21736, 46056, 127260, 189420, 271953, 574056, 1330896, 2197656, 3785376, 9058896, 15924546, 24890040, 37191000, ...

Crossrefs

Cf. A081976 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a Fibonacci number).
Cf. A006882 (a(0)=a(1)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a factorial).
Cf. A079078 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a primorial).

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[ IntegerQ[ Sqrt[8k*a[n-1]+1] ], Return[k] ] ]; Table[ Print[a[n]]; a[n], {n, 0, 42}] (* Jean-François Alcover, Sep 14 2012 *)
  • Python
    a = 1
    for n in range(55):
        print(a, end=',')
        b = k = 0
        while k<=a:
            tn = b*(b+1)//2
            k = 0
            if tn%a==0:
                k = tn // a
            b += 1
        a = k

A114420 Quadruple primorial n#### = n#4.

Original entry on oeis.org

1, 2, 3, 5, 7, 22, 39, 85, 133, 506, 1131, 2635, 4921, 20746, 48633, 123845, 260813, 1224014, 2966613, 8297615, 18517723, 89353022, 234362427, 688702045, 1648077347, 8667243134, 23670605127, 70936310635, 176344276129
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to quadruple factorial A007662 = n!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n####)*((n-1)####)*((n-2)####)*((n-3)####) = n#. n#### is a k-almost prime for k = ceiling(n/4).

Examples

			n#### is also written n#4.
0#### = p(0) = 1.
1#### = p(1) = 2.
2#### = p(2) = 3.
3#### = p(3) = 5.
4#### = p(4)p(0) = 7*1 = 7.
5#### = p(5)p(1) = 11*2 = 22.
6#### = p(6)p(2) = 13*3 = 39.
7#### = p(7)p(3) = 17*5 = 85.
8#### = p(8)p(4)p(0) = 19*7*1 = 133.
9#### = p(9)p(5)p(1) = 23*11*2 = 506.
10#### = p(10)p(6)p(2) = 29*13*3 = 1131.
11#### = p(11)p(7)p(3) = 31*17*5 = 2635.
12#### = 37*19*7*1 = 4921.
13#### = 41*23*11*2 = 20746.
14#### = 43*29*13*3 = 48633.
15#### = 47*31*17*5 = 123845.
16#### = 53*37*19*7*1 = 260813.
17#### = 59*41*23*11*2 = 1224014.
18#### = 61*43*29*13*3 = 2966613.
19#### = 67*47*31*17*5 = 8297615.
20#### = 71*53*37*19*7*1 = 18517723.
21#### = 73*59*41*23*11*2 = 89353022.
22#### = 79*61*43*29*13*3 = 234362427.
23#### = 83*67*47*31*17*5 = 688702045.
24#### = 89*71*53*37*19*7*1 = 1648077347.
25#### = 97*73*59*41*23*11*2 = 8667243134.
26#### = 101*79*61*43*29*13*3 = 23670605127.
27#### = 103*83*67*47*31*17*5 = 70936310635.
28#### = 107*89*71*53*37*19*7*1 = 176344276129.
		

Crossrefs

Formula

a(n) = n#### = prime(n)*((n-4)####) = Prod[i == n mod 4, to n] prime(i). Notationally, prime(0) = 1; (-n)#### = 0#### = 1.

A114421 Quintuple primorial n##### = n#5.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 26, 51, 95, 161, 319, 806, 1887, 3895, 6923, 14993, 42718, 111333, 237595, 463841, 1064503, 3118414, 8795307, 19720385, 41281849, 103256791, 314959814, 905916621, 2110081195, 4499721541, 11668017383
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to quintuple factorial A085157 = n!!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n#5)*((n-1)#5)*((n-2)#5)*((n-3)#5)*((n-4)#5) = n#. n#5 is a k-almost prime for k = ceiling(n/5).

Examples

			n##### is also written n#5.
0#5 = p(0) = 1.
1#5 = p(1) = 2.
2#5 = p(2) = 3.
3#5 = p(3) = 5.
4#5 = p(4) = 7.
5#5 = p(5)p(0) = 11*1 = 11.
6#5 = p(6)p(1) = 13*2 = 26.
7#5 = p(7)p(2) = 17*3 = 51.
8#5 = p(8)p(3) = 19*5 = 95.
9#5 = p(9)p(4) = 23*7 = 161.
10#5 = p(10)p(5)p(0) = 29*11*1 = 319.
11#5 = p(11)p(6)p(1) = 31*13*2 = 806.
12#5 = 37*17*3 = 1887.
13#5 = 41*19*5 = 3895.
14#5 = 43*23*7 = 6923.
15#5 = 47*29*11*1 = 14993.
16#5 = 53*31*13*2 = 42718.
17#5 = 59*37*17*3 = 111333.
18#5 = 61*41*19*5 = 237595.
19#5 = 67*43*23*7 = 463841.
20#5 = 71*47*29*11*1 = 1064503.
21#5 = 73*53*31*13*2 = 3118414.
22#5 = 79*59*37*17*3 = 8795307.
23#5 = 83*61*41*19*5 = 19720385.
24#5 = 89*67*43*23*7 = 41281849.
25#5 = 97*71*47*29*11*1 = 103256791.
26#5 = 101*73*53*31*13*2 = 314959814.
27#5 = 103*79*59*37*17*3 = 905916621.
28#5 = 107*83*61*41*19*5 = 2110081195.
29#5 = 109*89*67*43*23*7 = 4499721541.
30#5 = 113*97*71*47*29*11*1 = 11668017383.
		

Crossrefs

Formula

a(n) = n##### = prime(n)*((n-5)#####) = Prod[i == n mod 5, to n] prime(i). Notationally, prime(0) = 1; (-n)##### = 0#### = 1.

A114995 Numbers k such that the sum of the first k double factorials (1!! + 2!! + ... + k!!) is prime.

Original entry on oeis.org

2, 5, 9, 10, 13, 14, 22, 25, 50, 66, 125, 250, 293, 314, 349, 1622, 1642, 2937, 2966, 3841, 4298, 4898, 5270
Offset: 1

Views

Author

Giovanni Resta, Feb 23 2006

Keywords

Comments

a(18) must be greater than 2300. The sum of the first 1642 double factorials is a (probable) prime with 2286 digits.
Numbers corresponding to a(18)-a(23) are probable primes. - Farideh Firoozbakht, May 16 2010

Examples

			5 belongs since 1!! + 2!! + 3!! + 4!! + 5!! = 29, a prime.
		

Crossrefs

Extensions

a(18)-a(23) from Farideh Firoozbakht, May 16 2010
Showing 1-6 of 6 results.