cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A079085 Number of distinct prime factors of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 4, 3, 2, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 3, 3, 4, 5, 4, 4, 3, 3, 4, 4, 4, 5, 4, 3, 3, 4, 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 5, 4, 3, 4, 3, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 5, 5, 3, 4, 5, 5, 4, 3, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4, 5, 6, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Cf. A079086.

Programs

  • Haskell
    a079085 = a001221 . a079079  -- Reinhard Zumkeller, Oct 08 2012
    
  • Mathematica
    Table[PrimeNu[(Prime[n] + 1)*(Prime[n + 1] + 1)/4], {n, 1, 50}] (* G. C. Greubel, Apr 25 2017 *)
  • PARI
    for(n=1,50, print1(omega((prime(n) + 1)*(prime(n + 1) + 1)/4), ", ")) \\ G. C. Greubel, Apr 25 2017

Formula

a(n) = A001221(A079079(n)).

A079086 Total number of prime factors of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

1, 2, 3, 4, 3, 3, 4, 5, 5, 6, 5, 3, 4, 6, 7, 6, 4, 3, 6, 5, 5, 7, 6, 5, 4, 5, 7, 6, 4, 8, 9, 5, 5, 6, 6, 4, 3, 6, 6, 6, 6, 8, 7, 4, 7, 6, 7, 8, 5, 5, 8, 7, 6, 6, 6, 8, 8, 5, 3, 4, 5, 6, 7, 5, 3, 4, 4, 5, 6, 5, 7, 9, 6, 5, 10, 10, 4, 3, 4, 6, 5, 7, 8, 6, 7, 7, 5, 4, 7, 8, 10, 9, 6, 7, 9, 8, 6, 5, 3, 3, 5, 6, 6, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079086 = a001222 . a079079  -- Reinhard Zumkeller, Oct 08 2012
    
  • Mathematica
    a[n_] := PrimeOmega[(Prime[n]+1) * (Prime[n+1]+1) / 4]; Array[a, 100] (* Amiram Eldar, Apr 06 2025 *)
  • PARI
    a(n) = bigomega((prime(n)+1)*(prime(n+1)+1)/4); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = A001222(A079079(n)).

A079080 a(n) = gcd((prime(n)+1)*(prime(n+1)+1)/4, prime(n)*prime(n+1)+1).

Original entry on oeis.org

1, 2, 12, 6, 6, 3, 18, 6, 4, 60, 4, 3, 42, 6, 4, 2, 30, 2, 6, 36, 8, 6, 2, 3, 3, 204, 6, 54, 3, 48, 6, 2, 138, 6, 300, 4, 2, 6, 4, 2, 90, 12, 96, 3, 396, 10, 14, 6, 114, 3, 8, 120, 6, 2, 4, 4, 540, 4, 3, 282, 6, 6, 6, 156, 3, 6, 2, 6, 174, 3, 4, 6, 4, 2, 6, 4, 3, 3, 15, 6, 210, 12, 216, 4, 6, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079080 n = a079079 n `gcd` a023523 (n + 1)
    -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    a[n_] := Module[{p = Prime[n], q}, q = NextPrime[p]; GCD[(p+1) * (q+1) / 4, p*q + 1]]; Array[a, 100] (* Amiram Eldar, Apr 06 2025 *)
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); gcd((p+1)*(q+1)/4, p*q+1); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = gcd(A079079(n), A023523(n+1)).

A079081 Numerator of (prime(n)+1)*(prime(n+1)+1)/(4*(prime(n)*prime(n+1)+1)).

Original entry on oeis.org

3, 3, 1, 4, 7, 21, 5, 20, 45, 4, 76, 133, 11, 88, 162, 405, 31, 527, 204, 37, 185, 280, 945, 735, 833, 13, 468, 55, 1045, 76, 704, 2277, 35, 875, 19, 1501, 3239, 1148, 1827, 3915, 91, 728, 97, 3201, 25, 1060, 848, 2128, 115, 4485, 1755, 121, 2541, 8127, 4257, 4455
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Denominator = A079082.

Programs

  • Haskell
    a079081 n = a079081_list !! (n-1)
    a079081_list = zipWith div a079079_list a079080_list
    -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    a[n_] := Module[{p = Prime[n], q}, q = NextPrime[p]; Numerator[(p+1) * (q+1) / (4 * (p*q + 1))]]; Array[a, 100] (* Amiram Eldar, Apr 06 2025 *)
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); numerator((p+1) * (q+1) / (4 * (p*q + 1))); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = numerator(A079079(n)/A023523(n+1)).
a(n) = A079079(n)/A079080(n).

A079082 Denominator of (prime(n)+1)*(prime(n+1)+1)/(4*(prime(n)*prime(n+1)+1)).

Original entry on oeis.org

7, 8, 3, 13, 24, 74, 18, 73, 167, 15, 287, 506, 42, 337, 623, 1564, 120, 2044, 793, 144, 721, 1093, 3694, 2878, 3266, 51, 1837, 216, 4106, 299, 2773, 8974, 138, 3452, 75, 5927, 12796, 4537, 7223, 15484, 360, 2881, 384, 12674, 99, 4199, 3361, 8437, 456
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Numerator = A079081.

Programs

  • Haskell
    a079082 n = a079082_list !! (n-1)
    a079082_list = zipWith div (tail a023523_list) a079080_list
    -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    ((#[[1]]+1)(#[[2]]+1))/(4(Times@@#+1))&/@Partition[Prime[Range[50]],2,1]//Denominator (* Harvey P. Dale, Jan 01 2018 *)
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); denominator((p+1) * (q+1) / (4 * (p*q + 1))); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = denominator(A079079(n)/A023523(n+1)).
a(n) = A023523(n+1)/A079080(n).

A079089 Sum of divisors of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

4, 12, 28, 60, 96, 104, 234, 360, 546, 744, 620, 640, 1152, 1488, 1815, 2178, 2304, 1728, 3510, 3458, 3420, 5952, 5760, 4446, 4104, 7056, 8400, 8640, 5760, 10160, 12240, 11232, 13824, 14976, 17360, 11200, 10080, 20160, 21840, 21600, 26208
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079089 = a000203 . a079079  -- Reinhard Zumkeller, Oct 08 2012
    
  • Mathematica
    a[n_] := DivisorSigma[1, (Prime[n]+1) * (Prime[n+1]+1) / 4]; Array[a, 100] (* Amiram Eldar, Apr 06 2025 *)
  • PARI
    a(n) = sigma((prime(n)+1)*(prime(n+1)+1)/4); \\ Amiram Eldar, Apr 06 2025

Formula

a(n) = A000203(A079079(n)).

A079090 Sum of distinct prime factors of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

3, 5, 5, 5, 12, 10, 10, 10, 10, 10, 21, 29, 23, 16, 5, 10, 41, 50, 22, 42, 44, 17, 17, 15, 27, 35, 18, 21, 38, 24, 16, 39, 40, 17, 29, 100, 122, 53, 41, 39, 30, 25, 102, 111, 21, 60, 62, 31, 52, 44, 23, 21, 23, 55, 59, 21, 27, 158, 189, 123, 83, 23, 36, 175, 213, 141, 98, 47
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079090 = a008472 . a079079  -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    Total[Transpose[FactorInteger[((#[[1]]+1)(#[[2]]+1))/4]][[1]]]&/@ Partition[Prime[Range[70]],2,1] (* Harvey P. Dale, Apr 24 2015 *)
  • PARI
    a(n) = vecsum(factor((prime(n)+1)*(prime(n+1)+1)/4)[, 1]); \\ Amiram Eldar, Apr 07 2025

Formula

a(n) = A008472(A079079(n)).

A079091 Sum of all prime factors of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

3, 5, 7, 9, 12, 13, 13, 14, 15, 16, 27, 29, 23, 22, 18, 19, 41, 50, 29, 47, 48, 23, 23, 25, 34, 37, 28, 27, 38, 34, 28, 42, 40, 27, 36, 102, 122, 57, 46, 45, 33, 33, 110, 114, 31, 69, 70, 39, 52, 47, 33, 36, 37, 61, 64, 32, 37, 162, 189, 123, 90, 37, 40, 177, 213, 141, 111, 60
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079091 = a001414 . a079079  -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    Total[Times@@@FactorInteger[#]]&/@(Times@@(#+1)/4&/@Partition[ Prime[Range[100]],2,1]) (* Harvey P. Dale, May 26 2011 *)
  • PARI
    a(n) = my(f = factor((prime(n)+1)*(prime(n+1)+1)/4)); f[, 1]~ * f[, 2]; \\ Amiram Eldar, Apr 07 2025

Formula

a(n) = A001414(A079079(n)).

A079093 Squarefree kernel of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

3, 6, 6, 6, 42, 21, 30, 30, 30, 30, 38, 399, 462, 66, 6, 30, 930, 1054, 102, 222, 370, 210, 210, 105, 357, 1326, 78, 330, 3135, 114, 66, 1518, 4830, 210, 570, 3002, 6478, 1722, 1218, 870, 2730, 546, 582, 3201, 330, 530, 742, 798, 13110, 4485, 390, 330, 462, 1806
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079093 = a007947 . a079079  -- Reinhard Zumkeller, Oct 09 2012
    
  • Mathematica
    Times@@Transpose[FactorInteger[#]][[1]]&/@(Times@@@Partition[ Prime[ Range[ 60]]+1,2,1]/4) (* Harvey P. Dale, Jan 06 2013 *)
  • PARI
    a(n) = factorback(factor((prime(n)+1)*(prime(n+1)+1)/4)[,1]); \\ Michel Marcus, Feb 14 2018

Formula

a(n) = A007947(A079079(n)).

A079084 Greatest prime factor of (prime(n)+1)*(prime(n+1)+1)/4.

Original entry on oeis.org

3, 3, 3, 3, 7, 7, 5, 5, 5, 5, 19, 19, 11, 11, 3, 5, 31, 31, 17, 37, 37, 7, 7, 7, 17, 17, 13, 11, 19, 19, 11, 23, 23, 7, 19, 79, 79, 41, 29, 29, 13, 13, 97, 97, 11, 53, 53, 19, 23, 23, 13, 11, 11, 43, 43, 11, 17, 139, 139, 71, 71, 11, 13, 157, 157, 83, 83, 29, 29, 59, 59, 23, 23, 19
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 22 2002

Keywords

Crossrefs

Programs

  • Haskell
    a079084 = a006530 . a079079  -- Reinhard Zumkeller, Oct 08 2012
    
  • Mathematica
    a[n_]:=FactorInteger[(Prime[n]+1)(Prime[n+1]+1)/4][[-1,1]]; Table[a[n],{n,1,74}] (* Jean-François Alcover, Mar 18 2011 *)
    FactorInteger[(First[#]+1) (Last[#]+1)/4][[-1,1]]&/@Partition[Prime[ Range[100]],2,1] (* Harvey P. Dale, Nov 14 2011 *)
  • PARI
    a(n) = my(f=factor((prime(n)+1)*(prime(n+1)+1)/4)); f[#f~,1]; \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A006530(A079079(n)).
Showing 1-10 of 16 results. Next