cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079128 Number of degree-n permutations with (mutually) relatively prime cycle lengths.

Original entry on oeis.org

1, 1, 4, 15, 96, 455, 4320, 29295, 300160, 2663199, 36288000, 348523175, 5748019200, 68027248575, 1116542242816, 16813959537375, 334764638208000, 4954072089341375, 115242726703104000, 1966765155600364119, 45415699475660800000, 930312555383281809375
Offset: 1

Views

Author

Keywords

Comments

a(p) = p!-(p-1)! for prime p. Conjecture: a(n) is divisible by n^2-1 for n>3.
Conjecture: gcd(a(n),n)=1. - Vladeta Jovovic, Jan 25 2003

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, g) option remember; `if`(n=0, `if`(g>=2, 1, 0),
          `if`(i<2, 0, b(n, i-1, g) +`if`(igcd(g, i)<2, 0,
           add((i-1)!^j/j! *multinomial(n, i$j, n-i*j)*
             b(n-i*j, i-1, igcd(i, g)), j=1..n/i))))
        end:
    a:= n-> n!-b(n, n, 0):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jun 06 2013
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0), add(
          (j-1)!*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 03 2021
  • Mathematica
    f[list_] :=
    Total[list]!/Apply[Times, Table[list[[i]], {i, 1, Length[list]}]]/
      Apply[Times, Select[Table[Count[list, i], {i, 1, Total[list]}], # > 0 &]!];
    Table[Total[Map[f, Select[IntegerPartitions[n], Apply[GCD, #] == 1 &]]], {n, 1, 25}] (* Geoffrey Critzer, Jun 06 2013 *)
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, g_] := b[n, i, g] = If[n==0, If[g >= 2, 1, 0], If[i<2, 0, b[n, i-1, g] + If[GCD[g, i]<2, 0, Sum[(i-1)!^j/j!*multinomial[n, Append[Array[i&, j], n-i*j]]*b[n-i*j, i-1, GCD[i, g]], {j, 1, n/i}]]]]; a[n_] := n! - b[n, n, 0]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)