A079284 Diagonal sums of triangle A008949.
1, 1, 3, 4, 9, 13, 26, 39, 73, 112, 201, 313, 546, 859, 1469, 2328, 3925, 6253, 10434, 16687, 27633, 44320, 72977, 117297, 192322, 309619, 506037, 815656, 1329885, 2145541, 3491810, 5637351, 9161929, 14799280, 24026745, 38826025, 62983842, 101809867, 165055853, 266865720
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Donatella Merlini, Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-2).
Programs
-
Magma
[Fibonacci(n+3)-2^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 05 2013
-
Maple
with (combinat):a[0]:=0:a[1]:=1:a[2]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-2] od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
-
Mathematica
CoefficientList[Series[(1 - x^2) / ((1 - x - x^2) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *) LinearRecurrence[{1,3,-2,-2},{1,1,3,4},40] (* Harvey P. Dale, Nov 30 2018 *)
Formula
a(n) = Sum_{j=0..floor(n/2)} Sum_{i=0..j} binomial(n-j, i).
a(n) = Fibonacci(n+3) - 2^floor((n+1)/2). - Vladeta Jovovic, Feb 12 2003
G.f.: (1-x^2)/((1-x-x^2)(1-2x^2)). - Paul Barry, Jan 13 2005
Comments