cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079284 Diagonal sums of triangle A008949.

Original entry on oeis.org

1, 1, 3, 4, 9, 13, 26, 39, 73, 112, 201, 313, 546, 859, 1469, 2328, 3925, 6253, 10434, 16687, 27633, 44320, 72977, 117297, 192322, 309619, 506037, 815656, 1329885, 2145541, 3491810, 5637351, 9161929, 14799280, 24026745, 38826025, 62983842, 101809867, 165055853, 266865720
Offset: 0

Views

Author

Paul Barry, Feb 08 2003

Keywords

Comments

a(2n) - a(2n-1) = Fibonacci(2n+1).
Diagonal sums of triangle A054450. - Paul Barry, Oct 23 2004

Crossrefs

Programs

  • Magma
    [Fibonacci(n+3)-2^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 05 2013
  • Maple
    with (combinat):a[0]:=0:a[1]:=1:a[2]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-2] od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    CoefficientList[Series[(1 - x^2) / ((1 - x - x^2) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)
    LinearRecurrence[{1,3,-2,-2},{1,1,3,4},40] (* Harvey P. Dale, Nov 30 2018 *)

Formula

a(n) = Sum_{j=0..floor(n/2)} Sum_{i=0..j} binomial(n-j, i).
a(n) = Fibonacci(n+3) - 2^floor((n+1)/2). - Vladeta Jovovic, Feb 12 2003
G.f.: (1-x^2)/((1-x-x^2)(1-2x^2)). - Paul Barry, Jan 13 2005