cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A259632 a(n) = floor(exp(H_k)*log(H_k)) - sigma(k) where k is the n-th colossally abundant number (Sequence A079526 applied to the colossally abundant numbers (A004490).)

Original entry on oeis.org

-2, -2, -3, -2, 0, 28, 199, 483, 9040, 143814, 306295, 963844, 5155067, 81053615, 1334916470, 29106956400, 58655156000, 1817551640000, 56466287000000, 376943530000000, 1144451930000000, 41803527000000000
Offset: 1

Views

Author

Gene Ward Smith, Dec 17 2016

Keywords

Comments

It follows easily from the work of Lagarias that the Riemann hypothesis is equivalent to this sequence's being nonnegative except for the first four terms.

Crossrefs

A057641 a(n) = floor(H(n) + exp(H(n))*log(H(n))) - sigma(n), where H(n) = Sum_{k=1..n} 1/k and sigma(n) (A000203) is the sum of the divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 4, 0, 7, 2, 7, 5, 13, 0, 17, 9, 12, 8, 23, 5, 27, 8, 21, 20, 34, 1, 33, 25, 30, 17, 46, 7, 50, 22, 40, 37, 46, 6, 62, 43, 50, 19, 70, 19, 74, 37, 46, 55, 82, 9, 79, 46, 70, 47, 95, 32, 83, 38, 81, 74, 107, 2, 112, 81, 76, 56, 102, 45, 125, 70, 103, 58, 133, 14, 138, 101
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2000

Keywords

Comments

Theorem (Lagarias): a(n) is nonnegative for all n if and only if the Riemann Hypothesis is true.
Up to rank n=10^4, zeros occur only at n=1,2,4,6 and 12; ones occur at n=3 and n=24. The first occurrence of k = 0,1,2,3,... is at n = 1,3,8,-1,5,10,36,7,16,14,-1,-1,15,11,72,... where -1 means that k does not occur among the first 10^4 terms. - Robert G. Wilson v, Dec 06 2010, reformulated by M. F. Hasler, Sep 09 2011
Looking at the graph of this sequence, it appears that there is a slowly growing lower bound. It is even more apparent when larger ranges of points are computed. Numbers A176679(n+2) and A222761(n) give the (x,y) coordinates of the n-th point. - T. D. Noe, Mar 28 2013

References

  • G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{h = HarmonicNumber@n}, Floor[h + Exp@h*Log@h] - DivisorSigma[1, n]]; Array[f, 74] (* Robert G. Wilson v, Dec 06 2010 *)
  • PARI
    a(n)={my(H=sum(k=1,n,1/k)); floor(exp(H)*log(H)+H) - sigma(n)}
    list_A057641(Nmax,H=0,S=1)=for(n=S,Nmax, H+=1/n; print1(floor(exp(H)*log(H)+H) - sigma(n),","))  \\ M. F. Hasler, Sep 09 2011

Formula

a(n) = A057640(n) - A000203(n). - Omar E. Pol, Oct 25 2019

Extensions

Five more terms from Robert G. Wilson v, Dec 06 2010
I deleted some unproved assertions by Robert G. Wilson v about the presence of 0's, 1's, ... in this sequence. - N. J. A. Sloane, Dec 07 2010

A079527 a(n) = floor( exp(H_n)*log(H_n) ).

Original entry on oeis.org

0, 1, 3, 5, 8, 10, 12, 15, 17, 20, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 160, 163, 166, 169, 172, 175, 178
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2003

Keywords

Crossrefs

H_n = sum of harmonic series (see A002387).
Cf. A079526.

Programs

  • Magma
    [Floor(Exp(HarmonicNumber(n))*Log(HarmonicNumber(n))): n in [1..80]]; // G. C. Greubel, Jan 15 2019
    
  • Mathematica
    a[n_] := Exp[HarmonicNumber[n]] Log[HarmonicNumber[n]] // Floor;
    Array[a, 64] (* Jean-François Alcover, Oct 08 2018 *)
  • PARI
    {h(n) = sum(k=1, n, 1/k)};
    vector(80, n, floor( exp(h(n))*log(h(n))) ) \\ G. C. Greubel, Jan 15 2019
    
  • Sage
    [floor(exp(harmonic_number(n))*log(harmonic_number(n))) for n in (1..80)] # G. C. Greubel, Jan 15 2019

A306348 Numbers k such that exp(H_k)*log(H_k) <= sigma(k), where H_k is the harmonic number.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 24, 60
Offset: 1

Views

Author

Seiichi Manyama, Feb 09 2019

Keywords

Comments

If the Riemann hypothesis is true, there are no more terms.

Examples

			Let b(n) = exp(H_{a(n)})*log(H_{a(n)}).
n | a(n) |    b(n)    | sigma(a(n))
--+------+------------+-------------
1 |   1  |   0        |      1
2 |   2  |   1.817... |      3
3 |   3  |   3.791... |      4
4 |   4  |   5.894... |      7
5 |   6  |  10.384... |     12
6 |  12  |  25.218... |     28
7 |  24  |  57.981... |     60
8 |  60  | 166.296... |    168
		

Crossrefs

Programs

  • Mathematica
    For[k = 1, True, k++, If[Exp[HarmonicNumber[k]] Log[HarmonicNumber[k]] <= DivisorSigma[1, k], Print[k]]] (* Jean-François Alcover, Feb 14 2019 *)
Showing 1-4 of 4 results.